Генотип геном фенотип
Читайте также:
- Аллергены, индуцирующие развитие аллергических реакций гуморального типа
- Биология индивидуального развития.
- Биология индивидуального развития.
- Близнецовый метод
- В- лимфоциты.
- Введення клітин у культуру, їхнє походження
- Взаимодействие неаллельных генов или межаллельное взаимодействие.
- Генетика человека. Основы медицинской генетики.
- Генетические основы эволюции.
- Гомеостаз.
- Гомеостаз.
ЛЕКЦИЯ №8
Современная теория/ концепция гена.
1. Ген – это часть молекулы ДНК, которая является функциональной единицей наследственной информации.
2. Ген занимает определенный участок в хромосоме – локус.
3. Внутри гена может происходить перекомбинация.
4. ДНК, входящая в состав гена способна к репарации.
5. Существуют гены: структурные, регуляторные и т.д.
6. Расположение триплетов комплиментарно аминокислотам (мутации со сдвигом рамки считывания).
7. Генотип, будучи дискретным (состоящим из отдельных генов) функционирует как единое целое.
8. Генетический код универсален.
9. Генетический код вырожден (для многих аминокислот существует более одного кодона – сайта)
10. Гены располагаются в хромосоме в линейном порядке и образуют группу сцепления. Число групп сцепления соответствует гаплоидному набору хромосом (23 у человека или 24 с оговоркой на пол – х и у хромосомы).
- Фенотип как результат реализации генотипа в определенной среде.
- Количественная и качественная специфика проявления генов в признаках.
- Взаимодействие неаллельных генов.
Геном – совокупность генов, характерных для гаплоидного набора хромосом данного вида. При оплодотворении геномы родителей объединяются и образуют клеточный генотип зиготы.
Генотип – совокупность всех генов организма (генетическая конституция). Из генотипа зиготы в процессе онтогенеза возникает много сотен различных клеточных фенотипов. Отдельные клеточные фенотипы формируют фенотип всего организма. Весь процесс жизни от образования зиготы до естественной смерти контролируется генами. Генотип постоянно испытывает воздействие внешней среды, он взаимодействует со средой, что приводит к формированию всех признаков и свойств организма.
Долгое время считалось, что в зиготе находятся разные хромосомы для разных клеток, однако теперь известно, что в зиготе имеется та же генетическая информация, что и во всех клетках данного организма. В специализированных клетках работают гены, характерные для функций данных клеток, а все остальные – до 95% – заблокированы. Каждая эмбриональная клетка потенциально может стать любой клеткой организма, т.е. специализироваться в любую сторону – полипотентные клетки. Каждая клетка организма способна дифференцироваться только по одному пути. Направление специализации определяется внешней средой (химическим окружением хромосом – цитоплазмой). На самых ранних этапах эмбриогенеза, генотип уже взаимодействует со средой. Взаимодействие удобно просматривать на примере глобиновых генов. До и после рождения эти гены работают неодинаково. В раннем эмбриогенезе включается ген, отвечающий за альфа-цепь гемоглобина (он активен на протяжении всей жизни), а ген, отвечающий за синтез бета-цепи, неактивен. Зато есть ген, отвечающий за синтез гамма-цепи. После рождения ген бета-цепи начинает работать, а гамма – блокируется. Эти изменения связаны с особенностями дыхания. Фетальный гемоглобин легко доносит воздух до зародыша.
Фенотипическое проявление генотипа в зависимости Ио среды изменяется в пределах нормы реакции. От родителей потомки получают специфические типы химических реакций на разные условия среды. Совокупность всех химических реакций определят метаболизм – обмен веществ. Интенсивность обмена веществ варьирует в широких пределах. У каждого человека свои особенности обмена веществ, которые передается от поколения к поколению, и подчиняются законам Менделя. Различия в обмене веществ реализуются в конкретных условиях среды на уровне синтеза белка.
Дифференцированная реакция растений примулы в разных условиях окружающей среды. При обычной температуре 20-25 градусов и нормальном давлении – красные цветы, при повышенной температуре или давлении – белые цветы. Семена обладают теми же свойствами.
Муха – дрозофила имеет ген, формирующий замыкание крыльев на спину. Если мух с мутантным генов выводить при температуре22-25 градусов, крылья загнуты. При более низкой температуре – нормальные крылья и лишь у некоторых – загнуты. Ген обуславливает синтез термочувствительного белка. Поэтому, обсыхая после выхода из куколки, при повышенной температуре происходит деформация крыльев.
Никакие признаки не наследуются. Признаки развиваются на основе взаимодействия генотипа и среды. Наследуется только генотип, т.е. комплекс генов, который определяет норму биологической реакции организма, изменяющую проявление и выраженность признаков в разных условиях среды. Таким образом, организм реагирует на свойства внешней среды. Иногда один и тот же ген в зависимости от генотипа и от условий внешней среды по-разному проявляет признак или меняет полноту выраженности.
Степень проявления фенотипа – экспрессивность. Образно ее можно сравнить со степенью тяжести болезни в клинической практике. Экспрессивность подчиняется законам распределения Гаусса (некоторые в малом или среднем количестве). В основе изменчивости экспрессивности лежат и генетические факторы, и факторы внешней среды. Экспрессивность – очень важный показатель фенотипического проявления гена. Количественно ее степень определяют, используя статистический показатель.
Генетический признак может даже не проявляться в некоторых случаях. Если ген есть в генотипе, но он вовсе не проявляется – он пенетрирован. (русский ученый Тимофеев-Рисовский 1927 год). Пенетрантность – количество особей (%), проявляющих в фенотипе данный ген, по отношению к количеству особей, у которых этот признак мог бы проявиться. Пенетрантность свойственна проявлению многих генов. Важен принцип – «все или ничего» – либо проявляется, любо нет.
– наследственный панкреатит – 80%
– вывих бедра – 25%
– пороки развития глаз
Хорея Гентингтона проявляется в непроизвольном подергивании головы. Конечностей, постепенно прогрессирует и приводит к смерти. Может проявиться в раннем постэмбриональном периоде, в зрелом возрасте или не проявиться вообще. И экспрессивность, и пенетрантность поддерживаются естественным отбором, т.е. гены, контролирующие патологические признаки могут иметь разную экспрессивность и пенетрантность: заболевают не все носители гена, а у заболевших степень проявления будет различна. Проявление или неполное проявление признака, а так же его отсутствие зависит от среды и от модифицирующего действия других генов.
1919 год Бриджес ввел термин ген-модификатор. Теоретически любой ген может взаимодействовать с другими генами, а значит, и проявлять модифицирующее действие, но некоторые гены – модификаторы в большей степени. Они часто не имеют собственного признака, но способны усиливать или ослаблять проявление признака, контролируемого другим геном. В формировании признака кроме основных генов проявляют свое действие и модифицирующие гены.
Брахидактилия – может быть резкая или незначительная. Помимо основного гена, есть еще модификатор, который усиливает эффект.
Окраска млекопитающих – белая, черная + модификаторы.
Ген может действовать плейотропно (множественно), т.е. опосредовано влиять на течение разных реакций и развитие многих признаков. Гены могут оказывать влияние на другие признаки на разных стадиях онтогенеза. Если ген включается в позднем онтогенезе, то оказывается незначительное действие. Если на ранних стадиях – изменения более значительны.
Фенилкетанурия. У больных есть мутация, которая выключает фермент – фенилаланин – гидролазу. Поэтому фенилаланин не превращается в тирозин. В результате в крови количество фенилаланина повышается. Если выявить эту патологию рано (до 1 месяца) и перевести ребенка на другое питание, развитие идет нормально, если позднее – понижен размер головного мозга, умственная отсталость, не развиваются нормально, отсутствует пигментация, умственные способности минимальны.
Плейотропность отражает интеграцию генов и признаков.
У человека есть патологический ген, приводящий к синдрому Фанкони (порок развития или отсутствие большого пальца, порок или отсутствие лучевой кости, недоразвитие почки, коричневые пигментные пятна, нехватка кровяных телец).
Есть ген, связанный с Х-хромосомой. Невосприимчивость к инфекциям и нехватка кровяных телец.
Доминантный ген, сцепленный с Х-хромосомой – пилонефрит, лабиринтная тугоухость.
Синдром Марфани – паучьи пальцы, вывих хрусталика глаза, пороки развития сердца.
Полимерия. Если гены располагаются, каждый в своем отдельном локусе, но их взаимодействие проявляется в одном и том же направлении – это полигены. Один ген проявляет признак незначительно. Полигены дополняют друг друга и оказывают мощное действие – возникает полигенная система – т.е. система является результатом действия одинаково направленных генов. Гены подвергаются значительному влиянию главных генов, которых более 50. полигенных систем известно множество.
При сахарном диабете наблюдается умственная отсталость.
Рост, уровень интеллекта – определяются полигенными системами
Комплементарность – явление, при котором 2 неаллельных гена. Находясь в генотипе, одновременно приводят к формированию нового признака. Если присутствует один из пары – проявляется он.
Примером служат группы крови у человека.
Комплементарность может быть доминантная и рецессивная.
Для того чтобы человек имел нормальный слух, необходимо чтобы работали, согласовано многие гены, и доминантные и рецессивные. Если, хотя бы по одному гену он будет гомозиготен по рецессиву – слух будет ослаблен.
Эпистаз – такое взаимодействие генов, когда ген одной аллельной пары маскируется действием другой аллельной пары. Это обусловлено тем, что ферменты катализируют разные процессы клетки, Когда на одном метаболическом пути действуют несколько генов. Действие их должно быть согласовано во времени.
Механизм: если В выключится, он замаскирует действие С
В – эпистатический ген
С – гипостатический ген
Макьюсик:
| | следующая лекция ==> | |
Наследственность. Структурные уровни организации наследственного материала | | | Изменчивость |
Дата добавления: 2013-12-12 ; Просмотров: 1594 ; Нарушение авторских прав? ;
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Геноти́п — совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид (ещё отличием генотипа от генома является включение в понятие «геном» некодирующих последовательностей, не входящих в понятие «генотип»). Вместе с факторами внешней среды определяет фенотип организма.
Обычно о генотипе говорят в контексте определенного гена, у полиплоидных особей он обозначает комбинацию аллелей данного гена (см. гомозигота, гетерозигота). Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям:
1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма).
2. Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы, например, окраска шерсти животных, являются результатом взаимодействия нескольких генов по типу комплементарности.
Феноти́п (от греческого слова phainotip — являю, обнаруживаю) — совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешне средовых факторов. У диплоидных организмов в фенотипе проявляются доминантные гены.
Фенотип — совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития).
Несмотря на кажущееся строгое определение, концепция фенотипа имеет некоторые неопределенности. Во-первых, большинство молекул и структур кодируемых генетическим материалом, не заметны во внешнем виде организма, хотя являются частью фенотипа. Например, именно так обстоит дело с группами крови человека. Поэтому расширенное определение фенотипа должно включать характеристики, которые могут быть обнаружены техническими, медицинскими или диагностическими процедурами. Дальнейшее, более радикальное расширение может включать приобретенное поведение или даже влияние организма на окружающую среду и другие организмы. Например, согласно Ричарду Докинзу, плотину бобров также как и их резцы можно считать фенотипом генов бобра. [1]
Фенотип можно определить как «вынос» генетической информации навстречу факторам среды. В первом приближении можно говорить о двух характеристиках фенотипа: а) число направлений выноса характеризует число факторов среды, к которым чувствителен фенотип, — мерность фенотипа; б) «дальность» выноса характеризует степень чувствительности фенотипа к данному фактору среды. В совокупности эти характеристики определяют богатство и развитость фенотипа. Чем многомернее фенотип и чем он чувствительнее, чем дальше фенотип от генотипа, тем он богаче. Если сравнить вирус, бактерию, аскариду, лягушку и человека, то богатство фенотипа в этом ряду растет.
Гено́м — совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов.
Термин «геном» был предложен Гансом Винклером в 1920 г. для описания совокупности генов, заключённых в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими («избыточными») последовательностями нуклеотидов, которые не заключают в себе информации о белках и РНК.
Генетическая информация в клетках содержится не только в хромосомах ядра, но и во внехромосомных молекулах ДНК. У бактерий к таким ДНК относятся плазмиды и некоторые умеренные вирусы, в клетках эукариот — это ДНК митохондрий, хлоропластов и других органоидов клеток (См. плазмон). Объёмы генетической информации, заключённой в клетках зародышевой линии (предшественники половых клеток и сами гаметы) и соматических клетках, в ряде случаев существенно различаются. В онтогенезе соматические клетки могут утрачивать часть генетической информации клеток зародышевой линии, амплифицировать группы последовательностей и (или) значительно перестраивать исходные гены.
Следовательно, под геномом организма понимают суммарную ДНК гаплоидного набора хромосом и каждого из внехромосомных генетических элементов, содержащуюся в отдельной клетке зародышевой линии многоклеточного организма. В определении генома отдельного биологического вида необходимо учитывать, во-первых, генетические различия, связанные с полом организма, поскольку мужские и женские половые хромосомы различаются. Во-вторых, из-за громадного числа аллельных вариантов генов и сопутствующих последовательностей, которые присутствуют в генофонде больших популяций, можно говорить лишь о некоем усреднённом геноме, который сам по себе может обладать существенными отличиями от геномов отдельных особей. Размеры геномов организмов разных видов значительно отличаются друг от друга, и при этом часто не наблюдается корреляции между уровнем эволюционной сложности биологического вида и размером его генома.
Генофонд — понятие из популяционной генетики, описывающее совокупность всех генных вариаций (аллелей) определённой популяции. Популяция располагает всеми своими аллелями для оптимального приспособления к окружающей среде. Можно также говорить о едином генофонде вида, так как между разными популяциями вида происходит обмен генами.
Если во всей популяции существует лишь один аллель определённого гена, то популяция по отношению к вариантам этого гена называется мономорфной. При наличии нескольких разных вариантов гена в популяции она считается полиморфной.
Если у рассматриваемого вида имеется более чем один набор хромосом, то совокупное количество разных аллелей может превышать количество организмов. Однако в большинстве случаев количество аллелей всё же меньше. При сильном инбридинге часто возникают мономорфные популяции лишь с одним аллелем многих генов.
Одним из показателей объёма генофонда является эффективная величина популяции, сокращённо . У популяции людей с диплоидным набором хромосом может иметься максимально в два раза больше аллелей одного гена, чем индивидов, то есть
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Папиллярные узоры пальцев рук – маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Что это такое
Выделить конкретную особь из массы других можно, рассказав кратко о генотипе и фенотипе.
Генотип – это набор генов, присущий определённому организму. Гены передаются по наследству от родителей и влияют друг на друга, формируя индивидуальный генотип.
Фенотип – совокупность внешних и внутренних признаков, свойств, черт организма, приобретённых в процессе онтогенеза (индивидуального развития).
Примеры внешних признаков фенотипа:
- окраска;
- структура волос или шерсти;
- цвет и разрез глаз;
- размер и форма уха;
- форма носа.
Внутренние признаки фенотипа:
- анатомические – строение и расположение внутренних органов и тканей;
- физиологические – строение и работа клеток;
- биохимические – структура белка, воздействие ферментов, состав гормонов.
Между фенотипом и генотипом прослеживается прочная связь. Генотип определяет фенотип. Однако большое влияние на фенотип оказывает окружающая среда. В определённых условиях разные генотипы могут создавать схожие фенотипы, и наоборот, одинаковые генотипы – разные фенотипы под действием разных условий окружающей среды.
Изменчивость
Для каждой особи характерен индивидуальный генотип и фенотип. Не всегда гены определяют внешнее и внутреннее строение тела. Например, гены определяют склонность к ожирению, но под действием окружающей среды (здоровое питание, спорт) ожирение не является признаком фенотипа. Другой пример: в процессе жизни человек сломал и изменил форму носа. По генотипу человек имеет прямой нос, по фенотипу – с горбинкой.
Изменчивость по фенотипу в процессе жизни называется модификационной или фенотипической. Она приобретается в течение жизни, но не передаётся по наследству.
Генетическая изменчивость бывает двух видов:
- комбинативная – образование новых совокупностей генов в процессе мейоза;
- мутационная – скачкообразные изменения генов, передающиеся по наследству.
Рис. 3. Генетическая изменчивость.
Мутации, как и фенотипические изменения, накапливаются в течение жизни, но не всегда отражаются на фенотипе. Однако могут влиять на генотип следующих поколений.
Геном и генофонд
Не следует путать понятие генотипа с двумя схожими терминами – геномом и генофондом.
В отличие от генотипа (совокупность генов) геном – последовательность ДНК, в которой закодированы гены. Геном несёт наследственную информацию организма, заключённую в клетке.
Генофонд – совокупность всех аллелей, соответствующая определённой популяции. Генофонд определяет качественные признаки популяции.
Что мы узнали?
Фенотип и генотип тесно взаимосвязаны между собой. Генотип определяет фенотип, который может изменяться под действием внешней среды. Фенотип не передаётся по наследству, наследуется только генотип со всеми накопленными мутациями. Генотип отличается от генома (последовательности генов) и генофонда (совокупности генов в пределах популяции).
Генотип, геном, фенотип. Фенотип как результат реализации наследственной информации в определенных условиях среды.
Генотип – совокупность всех наследственных факторов.
Гено́м — совокупность наследственного материала, заключенного в клетке организма.
Фенотип – совокупность всех признаков и свойств организма.
Ведущая роль в формировании фенотипа принадлежит наследственной информации, заключенной в генотипе организма. Простые признаки развиваются в результате определенного типа взаимодействия соответствующих аллельных генов. Формирование сложных признаков осуществляется в результате разнообразных взаимодействий неаллельных генов непосредственно в генотипе. Стартовая программа индивидуального развития зиготы содержит пространственную информацию, определяющую передне-задние и спинно-брюшные координаты для развития структур. Факторы внешней среды могут способствовать или препятствовать проявлению признака, усиливать или ослаблять его выраженность. Внешняя среда — понятие сложное и делится на два порядка. Среда 1-го порядка — совокупность факторов внутренней среды организма — клеточное содержимое, характер прямых межклеточных взаимодействий, гормоны. Среда 2-го порядка — окружающая среды — совокупность внешних по отношению к организму факторов.
Формирование фенотипа — модификация. Модификация характеризуется нормой реакции, т. е. Пределами модификационной изменчивости признака, допустимом при данном генотипе.
Пенетрантность фенотипа отражает частоту фенотипического проявления имеющейся в генотипе информации. Она соответствует проценту особей, у которых доминантный аллель гена проявился в признак, по отношению ко всем носителям этого аллеля.
Экспрессивность — показатель, характеризующий фенотипическое проявление признака. Она характеризует степень выраженности признака и зависит от дозы соответствующего аллеля гена при моногенном наследовании или от суммарной дозы доминантных аллелей генов при полигенном наследовании.
Взаимодействие аллелей в детерминации признаков: доминирование, промежуточное проявления, рецессивность, кодоминирование, аллельная комплементация и исключение.
Доминирование — преобладание признака, который проявляется всегда в потомстве в гомо- и гетерозиготном состоянии.
Неполное доминирование — промежуточное проявление признака. Связано это с тем, что аллель, способный сформировать нормальный признак, находясь в двойной дозе у гомозиготы ВВ, проявляется сильнее, чем в единственной дозе у гетерозиготы Вв.
Рецессивность — подавляемость признака, который проявляется только в гомозиготном состоянии
Кодоминирование — тип взаимодействия аллельных генов, при котором каждый из аллелей проявляет свое действие. В результате этого формируется некий промежуточный вариант признака, новый по сравнению с вариантами, определяемыми каждым аллелем самостоятельно. (4 группа у ребенка, когда у родителей 2 и 3 группы).
Аллельная комплементация — в этом случае возможно формирование нормального признака А у организма, гетерозиготного по двум мутантным аллелям гена А(А’A»).
Аллельное исключение — процесс, при котором в диплоидной клетке экспрессируется лишь один аллель гена, в то время как экспрессия другого аллеля подавлена.
Кариотип человека. Характеристика методов дифференциального окрашивания хромосом. Тест полового хроматина и его применение в медицине.
Кариотип — диплоидный набор хромосом,характеризующийся их числом, величиной и формой.
Кариотип человека состоит из 22 пар гомологичных хромосом и одной пары половых промосом. ХУ соотвествует мужчинам, ХХ женщинам. По форме и размерам все аутосомы-гомологи на 7 групп, обозначаемых латинскими буквами от А до G. Кроме того, все гомологи в порядке уменьшения общей длины нумеруются от 1 до 22, а по положению центромеры все хромосомы делятся на метацентрические(в середине), субметацентрические(ближе к одному концу) и акроцентрические(на теломерном конце).
Методы дифференциальной окраски хромосом позволяют выявить структурную организацию, которая выражается в поперечной исчерченности. Наиболее частый метод — метод с окраской хромосом красителем Гимза. Препараты хромосом окрашиваются трипсином, который удаляет белки, затем наносят краситель Гимза и появляется характерный для каждой из хромосом рисунок из светлых и темных пигментов.
Q-окраска хромосом — метод флюоресцентной микроскопии хромосом, которые могут быть окрашены разными флюрохромами.
При микроскопии препаратов у женщин с нормальным генотипом (ХХ) обнаруживаются две Х-хромосомы, одна активная и одна неактивная, т. е. в конденсированном состоянии. Обычно инактивируется «худшая» хромосома, что объясняет низкий процент заболеваемости болезнями, связанными с Х-хромосомами. У мужчин, при нормальном генотипе, обнаруживается только одна активная Х-хромосома. Хромосома в неактивном состоянии называется глыбкой или тельцем Барра.
Тест полового хроматина применяется в медицине при исследовании на болезни, связанных с изменением набора хромосом или на гормональный статус организма. Так же этот метод используется в криминалистике для определения пола.
Генотип, фенотип, геном, генофонд — КиберПедия
Геноти́п — совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид (ещё отличием генотипа от генома является включение в понятие «геном» некодирующих последовательностей, не входящих в понятие «генотип»). Вместе с факторами внешней среды определяет фенотип организма.
Обычно о генотипе говорят в контексте определенного гена, у полиплоидных особей он обозначает комбинацию аллелей данного гена (см. гомозигота, гетерозигота). Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям:
1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма).
2. Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы, например, окраска шерсти животных, являются результатом взаимодействия нескольких генов по типу комплементарности.
Феноти́п (от греческого слова phainotip — являю, обнаруживаю) — совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешне средовых факторов. У диплоидных организмов в фенотипе проявляются доминантные гены.
Фенотип — совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития).
Несмотря на кажущееся строгое определение, концепция фенотипа имеет некоторые неопределенности. Во-первых, большинство молекул и структур кодируемых генетическим материалом, не заметны во внешнем виде организма, хотя являются частью фенотипа. Например, именно так обстоит дело с группами крови человека. Поэтому расширенное определение фенотипа должно включать характеристики, которые могут быть обнаружены техническими, медицинскими или диагностическими процедурами. Дальнейшее, более радикальное расширение может включать приобретенное поведение или даже влияние организма на окружающую среду и другие организмы. Например, согласно Ричарду Докинзу, плотину бобров также как и их резцы можно считать фенотипом генов бобра.[1]
Фенотип можно определить как «вынос» генетической информации навстречу факторам среды. В первом приближении можно говорить о двух характеристиках фенотипа: а) число направлений выноса характеризует число факторов среды, к которым чувствителен фенотип, — мерность фенотипа; б) «дальность» выноса характеризует степень чувствительности фенотипа к данному фактору среды. В совокупности эти характеристики определяют богатство и развитость фенотипа. Чем многомернее фенотип и чем он чувствительнее, чем дальше фенотип от генотипа, тем он богаче. Если сравнить вирус, бактерию, аскариду, лягушку и человека, то богатство фенотипа в этом ряду растет.
Гено́м — совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов.
Термин «геном» был предложен Гансом Винклером в 1920 г. для описания совокупности генов, заключённых в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими («избыточными») последовательностями нуклеотидов, которые не заключают в себе информации о белках и РНК.
Генетическая информация в клетках содержится не только в хромосомах ядра, но и во внехромосомных молекулах ДНК. У бактерий к таким ДНК относятся плазмиды и некоторые умеренные вирусы, в клетках эукариот — это ДНК митохондрий, хлоропластов и других органоидов клеток (См. плазмон). Объёмы генетической информации, заключённой в клетках зародышевой линии (предшественники половых клеток и сами гаметы) и соматических клетках, в ряде случаев существенно различаются. В онтогенезе соматические клетки могут утрачивать часть генетической информации клеток зародышевой линии, амплифицировать группы последовательностей и (или) значительно перестраивать исходные гены.
Следовательно, под геномом организма понимают суммарную ДНК гаплоидного набора хромосом и каждого из внехромосомных генетических элементов, содержащуюся в отдельной клетке зародышевой линии многоклеточного организма. В определении генома отдельного биологического вида необходимо учитывать, во-первых, генетические различия, связанные с полом организма, поскольку мужские и женские половые хромосомы различаются. Во-вторых, из-за громадного числа аллельных вариантов генов и сопутствующих последовательностей, которые присутствуют в генофонде больших популяций, можно говорить лишь о некоем усреднённом геноме, который сам по себе может обладать существенными отличиями от геномов отдельных особей. Размеры геномов организмов разных видов значительно отличаются друг от друга, и при этом часто не наблюдается корреляции между уровнем эволюционной сложности биологического вида и размером его генома.
Генофонд — понятие из популяционной генетики, описывающее совокупность всех генных вариаций (аллелей) определённой популяции. Популяция располагает всеми своими аллелями для оптимального приспособления к окружающей среде. Можно также говорить о едином генофонде вида, так как между разными популяциями вида происходит обмен генами.
Если во всей популяции существует лишь один аллель определённого гена, то популяция по отношению к вариантам этого гена называется мономорфной. При наличии нескольких разных вариантов гена в популяции она считается полиморфной.
Если у рассматриваемого вида имеется более чем один набор хромосом, то совокупное количество разных аллелей может превышать количество организмов. Однако в большинстве случаев количество аллелей всё же меньше. При сильном инбридинге часто возникают мономорфные популяции лишь с одним аллелем многих генов.
Одним из показателей объёма генофонда является эффективная величина популяции, сокращённо . У популяции людей с диплоидным набором хромосом может иметься максимально в два раза больше аллелей одного гена, чем индивидов, то есть <= 2 * (величины популяции). Исключены при этом половые хромосомы. Аллели всей популяци в идеальном случае распределены по закону Харди-Вайнберга.
Более крупный генофонд с множеством разных вариантов отдельных генов ведёт к лучшему приспособлению потомства к меняющейся окружающей среде. Разнообразие аллелей позволяет приспособиться к изменениям значительно быстрее, если соответствующие аллели уже имеются в наличии, чем если они должны появиться вследствие мутации. Тем не менее, в неизменяющейся окружающей среде меньшее число аллелей может быть более выгодным, чтобы при половом размножении не возникало слишком много неблагоприятных комбинаций.
Геном. Генотип. Фенотип — Мегаобучалка
- Фенотип как результат реализации генотипа в определенной среде.
- Количественная и качественная специфика проявления генов в признаках.
- Взаимодействие неаллельных генов.
Геном – совокупность генов, характерных для гаплоидного набора хромосом данного вида. При оплодотворении геномы родителей объединяются и образуют клеточный генотип зиготы.
Генотип – совокупность всех генов организма (генетическая конституция). Из генотипа зиготы в процессе онтогенеза возникает много сотен различных клеточных фенотипов. Отдельные клеточные фенотипы формируют фенотип всего организма. Весь процесс жизни от образования зиготы до естественной смерти контролируется генами. Генотип постоянно испытывает воздействие внешней среды, он взаимодействует со средой, что приводит к формированию всех признаков и свойств организма.
Фенотип – все признаки организма, формирующиеся в результате взаимодействия генотипа и среды. (Иогансен – 1803год) свойства любого организма зависят от генотипа и от среды, поэтому формирование организма – результат взаимодействия генетических факторов и факторов внешней среды.
Долгое время считалось, что в зиготе находятся разные хромосомы для разных клеток, однако теперь известно, что в зиготе имеется та же генетическая информация, что и во всех клетках данного организма. В специализированных клетках работают гены, характерные для функций данных клеток, а все остальные – до 95% — заблокированы. Каждая эмбриональная клетка потенциально может стать любой клеткой организма, т.е. специализироваться в любую сторону – полипотентные клетки. Каждая клетка организма способна дифференцироваться только по одному пути. Направление специализации определяется внешней средой (химическим окружением хромосом – цитоплазмой). На самых ранних этапах эмбриогенеза, генотип уже взаимодействует со средой. Взаимодействие удобно просматривать на примере глобиновых генов. До и после рождения эти гены работают неодинаково. В раннем эмбриогенезе включается ген, отвечающий за альфа-цепь гемоглобина (он активен на протяжении всей жизни), а ген, отвечающий за синтез бета-цепи, неактивен. Зато есть ген, отвечающий за синтез гамма-цепи. После рождения ген бета-цепи начинает работать, а гамма — блокируется. Эти изменения связаны с особенностями дыхания. Фетальный гемоглобин легко доносит воздух до зародыша.
Фенотипическое проявление генотипа в зависимости Ио среды изменяется в пределах нормы реакции. От родителей потомки получают специфические типы химических реакций на разные условия среды. Совокупность всех химических реакций определят метаболизм – обмен веществ. Интенсивность обмена веществ варьирует в широких пределах. У каждого человека свои особенности обмена веществ, которые передается от поколения к поколению, и подчиняются законам Менделя. Различия в обмене веществ реализуются в конкретных условиях среды на уровне синтеза белка.
Дифференцированная реакция растений примулы в разных условиях окружающей среды. При обычной температуре 20-25 градусов и нормальном давлении – красные цветы, при повышенной температуре или давлении – белые цветы. Семена обладают теми же свойствами.
Муха – дрозофила имеет ген, формирующий замыкание крыльев на спину. Если мух с мутантным генов выводить при температуре22-25 градусов, крылья загнуты. При более низкой температуре – нормальные крылья и лишь у некоторых – загнуты. Ген обуславливает синтез термочувствительного белка. Поэтому, обсыхая после выхода из куколки, при повышенной температуре происходит деформация крыльев.
Никакие признаки не наследуются. Признаки развиваются на основе взаимодействия генотипа и среды. Наследуется только генотип, т.е. комплекс генов, который определяет норму биологической реакции организма, изменяющую проявление и выраженность признаков в разных условиях среды. Таким образом, организм реагирует на свойства внешней среды. Иногда один и тот же ген в зависимости от генотипа и от условий внешней среды по-разному проявляет признак или меняет полноту выраженности.
Степень проявления фенотипа – экспрессивность. Образно ее можно сравнить со степенью тяжести болезни в клинической практике. Экспрессивность подчиняется законам распределения Гаусса (некоторые в малом или среднем количестве). В основе изменчивости экспрессивности лежат и генетические факторы, и факторы внешней среды. Экспрессивность – очень важный показатель фенотипического проявления гена. Количественно ее степень определяют, используя статистический показатель.
Генетический признак может даже не проявляться в некоторых случаях. Если ген есть в генотипе, но он вовсе не проявляется – он пенетрирован. (русский ученый Тимофеев-Рисовский 1927 год). Пенетрантность – количество особей (%), проявляющих в фенотипе данный ген, по отношению к количеству особей, у которых этот признак мог бы проявиться. Пенетрантность свойственна проявлению многих генов. Важен принцип – «все или ничего» — либо проявляется, любо нет.
— наследственный панкреатит – 80%
— вывих бедра – 25%
— пороки развития глаз
— ретинобластома – 80%
— отосклероз – 40%
— колотокома – 10%
Хорея Гентингтона проявляется в непроизвольном подергивании головы. Конечностей, постепенно прогрессирует и приводит к смерти. Может проявиться в раннем постэмбриональном периоде, в зрелом возрасте или не проявиться вообще. И экспрессивность, и пенетрантность поддерживаются естественным отбором, т.е. гены, контролирующие патологические признаки могут иметь разную экспрессивность и пенетрантность: заболевают не все носители гена, а у заболевших степень проявления будет различна. Проявление или неполное проявление признака, а так же его отсутствие зависит от среды и от модифицирующего действия других генов.
1919 год Бриджес ввел термин ген-модификатор. Теоретически любой ген может взаимодействовать с другими генами, а значит, и проявлять модифицирующее действие, но некоторые гены – модификаторы в большей степени. Они часто не имеют собственного признака, но способны усиливать или ослаблять проявление признака, контролируемого другим геном. В формировании признака кроме основных генов проявляют свое действие и модифицирующие гены.
Брахидактилия – может быть резкая или незначительная. Помимо основного гена, есть еще модификатор, который усиливает эффект.
Окраска млекопитающих – белая, черная + модификаторы.
Ген может действовать плейотропно (множественно), т.е. опосредовано влиять на течение разных реакций и развитие многих признаков. Гены могут оказывать влияние на другие признаки на разных стадиях онтогенеза. Если ген включается в позднем онтогенезе, то оказывается незначительное действие. Если на ранних стадиях – изменения более значительны.
Фенилкетанурия. У больных есть мутация, которая выключает фермент – фенилаланин – гидролазу. Поэтому фенилаланин не превращается в тирозин. В результате в крови количество фенилаланина повышается. Если выявить эту патологию рано (до 1 месяца) и перевести ребенка на другое питание, развитие идет нормально, если позднее – понижен размер головного мозга, умственная отсталость, не развиваются нормально, отсутствует пигментация, умственные способности минимальны.
Плейотропность отражает интеграцию генов и признаков.
У человека есть патологический ген, приводящий к синдрому Фанкони (порок развития или отсутствие большого пальца, порок или отсутствие лучевой кости, недоразвитие почки, коричневые пигментные пятна, нехватка кровяных телец).
Есть ген, связанный с Х-хромосомой. Невосприимчивость к инфекциям и нехватка кровяных телец.
Доминантный ген, сцепленный с Х-хромосомой – пилонефрит, лабиринтная тугоухость.
Синдром Марфани – паучьи пальцы, вывих хрусталика глаза, пороки развития сердца.
Полимерия. Если гены располагаются, каждый в своем отдельном локусе, но их взаимодействие проявляется в одном и том же направлении – это полигены. Один ген проявляет признак незначительно. Полигены дополняют друг друга и оказывают мощное действие – возникает полигенная система – т.е. система является результатом действия одинаково направленных генов. Гены подвергаются значительному влиянию главных генов, которых более 50. полигенных систем известно множество.
При сахарном диабете наблюдается умственная отсталость.
Рост, уровень интеллекта — определяются полигенными системами
Комплементарность – явление, при котором 2 неаллельных гена. Находясь в генотипе, одновременно приводят к формированию нового признака. Если присутствует один из пары – проявляется он.
Примером служат группы крови у человека.
Комплементарность может быть доминантная и рецессивная.
Для того чтобы человек имел нормальный слух, необходимо чтобы работали, согласовано многие гены, и доминантные и рецессивные. Если, хотя бы по одному гену он будет гомозиготен по рецессиву – слух будет ослаблен.
Эпистаз – такое взаимодействие генов, когда ген одной аллельной пары маскируется действием другой аллельной пары. Это обусловлено тем, что ферменты катализируют разные процессы клетки, Когда на одном метаболическом пути действуют несколько генов. Действие их должно быть согласовано во времени.
Механизм: если В выключится, он замаскирует действие С
В – эпистатический ген
С – гипостатический ген
Макьюсик:
« Соотношение между генотипом и фенотипом такое, как между характером человека и его репутацией: генотип (и характер) – внутренняя суть индивидуума, фенотип (и репутация) – это то, каким он выглядит или представляется окружающим».
ЛЕКЦИЯ №9
Изменчивость.
1. Модификационная изменчивость.
2. Комбинативная изменчивость.
3. Система браков.
4. Мутационная изменчивость.
Одним из признаков жизни является изменчивость. Любой живой организм отличается от других представителей вида. Изменчивость – свойство живых организмов существовать в разных формах. Групповая и индивидуальнаяизменчивость – классификация по эволюционному значению. Изменчивость, реализованная группой организмов, называется групповой, у одного организма или группы его клеток – индивидуальная.
По характеру изменения признаков и механизму:
—фенотипическая
— случайная
— модификационная
—генотипическая
— соматическая
— генеративная (мутационная, комбинативная)
а) генная
б) хромосомная
в) геномная
Модификационная изменчивость отражает изменение фенотипа под воздействием факторов внешней среды (усиление и развитие мышечной и костной массы у спортсменов, увеличение эритропоэза в условиях высокогорья и крайнего севера). Частный случай фенотипической изменчивости – фенокопии. Фенокопии – вызванные условиями внешней среды фенотипические модификации, имитирующие генетические признаки. Под влиянием внешних условий на генетически нормальный организм копируются признаки совсем другого генотипа. Проявление дальтонизма может произойти под влиянием питания, плохой психической конституции, повышенной раздражительности. У человека возникает заболевание витилиго (1% людей) – нарушение пигментации кожи. Генетический дефект есть у 30% болеющих, у остальных – профессиональное витилиго (воздействие на организм особых химических и отравляющих веществ). В Германии 15 лет назад рождались дети с фекомелией – укороченными ластовидными руками. Выяснилось. Что рождение таких детей происходило, если мать принимала Телидомид (успокоительное средство, показанное беременным). В результате нормальный немутантный генотип получал мутацию.
Фенокопии появляются в большинстве случаев при действии внешней среды на ранних стадиях эмбриогенеза, что приводит к врожденным заболеваниями порокам развития. Наличие фенокопий затрудняет диагностику заболеваний.
Соматическая изменчивость не передается по наследству.
Комбинативная изменчивость – результат независимого расхождения хромосом в процессе мейоза, оплодотворения, кроссинговера с рекомбинацией генов. При комбинативной изменчивости происходит перекомбинация генов, возникает новый индивидуальный набор хромосом, а значит, новый генотип и фенотип. Для комбинативной изменчивости в системе людей большое значение имеет система браков. Самая простая – случайный подбор пар (панмиксия). Строго панмиксных популяций не существует, т.к. существуют ограничения: социальные, религиозные, индивидуальные, экономические и другие. Поэтому в популяциях людей имеют место отклонения от панмиксии в двух направлениях:
1) Люди, состоящие между собой в родстве, вступают в брак чаще, чем при случайном подборе – инбридинг – инбирентные (кровнородственные браки).
2) Люди вступают в брак чаще при случайном подборе пар, чем при родственном бракосочетании – аутобридинг.
Инбридные браки имеют большое значение в медицинском плане. Т.к. вероятность того, что оба супруга обладают одинаковыми рецессивными генами гораздо выше, если супруги состоят между собой в родстве, особенно близком. Родство закономерно. С медицинской точки зрения близкими по генетическому эффекту считаются избирательные браки по фенотипическому признаку. Если выбор брачного партнера оказывает влияние на генотип потомка – ассортивные браки. Люди, схожие фенотипические, чаще вступают в брак, чем при случайной подборке пар – положительные ассортивные браки, если реже – отрицательные. Примерами могут служить браки между глухонемыми, людьми высокого роста, людей с одинаковым цветом кожи. Отрицательные ассортивные браки между рыжеволосыми людьми.
Близкородственные браки часто встречались на ранних этапах развития человечества.
Выделяют 3 группы инбридинга:
1. между родственниками первого родства
2. близкородственные браки изолированных популяций
3. поощряемые близкородственные браки по социальным, религиозным и другим соображениям.
Инцестные (запретные) браки между родственниками первого родства: мать-сын, отец-дочь, брат-сестра. Имели место в Египте, династии Птолемеев. В ряде восточных стран, род Ивана Грозного (начиная с Ивана Калиты – несколько подобных браков).
Правовые ограничения: браки между двоюродными родственниками, племянниками и тетями, племянницами и дядями — разрешены. Хотя в некоторых странах есть ограничения. США и Великобритании – дядя-племянница, полудядя-племянница – запрещены. В США двоюродные – запрещены, в Великобритании – разрешены.
Близкородственные браки в изолированных территориях (изолятах), в т.ч. и религиозных изолятах, неизбежны, потому что в противном случае популяция вымирает.
В больших неизолированных популяциях близкородственные браки составляют 1% в городе и 3% в селах, до троюродных. Близкородственные браки поощряются среди евреев, в восточных странах. Там до 12%.
В Самаркандской области
Дядя-племянница 46
Племянник-тетя 14
Двоюродные 42
Инцестные 2
Коэффициент инбридинга – средняя идентичная по происхождению.
США, католики – 0,00009
Израиль и Иордания – 0,432
Индия – 0,32
Япония – 0,0046
В Индии половина браков заключается между родственниками – детская смертность при любом достатке составляет 50%.
Генетический эффект близкородственных браков: редкие аутосомно-рецесивные заболевания становятся обычными.
Частота встречаемости рецессивных генов по сравнению с браками, заключенными между людьми, не являющимися родственниками, резко возрастает в браках между родственниками.
заболевание | Частота встречаемости (обычная) | Частота встречаемости (близкородственные браки) |
Фенилкетанурия | 1:15000 | 1:3000 |
Пигментная ксеродерма | 1:23000 | 1:2200 |
Болезнь Оруши | 1:52000 | 1:2500 |
Микроцефалия | 1:77000 | 1:4200 |
Ихтиоз | 1:1000000 | 1:16000 |
Амавротическая идиотия | 1:310000 | 1:8600 |
Анаталаземия | 1:360000 | 1:9600 |
Мутационная изменчивость — единственный вид изменчивости, в результате которого могут появиться новые гены, которые могли раньше не встречаться. Происходит изменение генотипа и как следствие, изменяется фенотип. В соответствии с тремя уровнями организации генного материала выделяют 3 вида мутаций: генные, хромосомные и геномные.
Мутация – внезапное наследственное изменение какого-либо фенотипического признака, вызванное резким структурным или функциональным изменением.
Генные мутации связаны с изменением внутренней структуры генов, что превращает одни аллели в другие. Можно выделить несколько типов генных мутаций на молекулярном уровне:
— замена пар нуклеотидов
— делеция
— вставка нуклеотида
— перестановка (инверсия) участка гена.
Замена пар нуклеотидов. Замена пуринового основания на другое пуриновое, или одного пиримидинового на другое пиримидиновое – транзиция. Замена пуринового основания на пиримидиновое и наоборот – трансверсия. При замене нуклеотидов в структурных генах происходит изменение смысла гена – возникают миссенс-мутации. При этом одна аминокислота в полипептиде замещается другой. Фенотипическое проявление мутации зависит от положения аминокислоты в полипептиде. При замене последовательности ЦТЦ на ЦАЦ возникает серповидно-клеточная анемия. Образуется новый полипептид и гемоглобин имеет совсем другие свойства. Некоторые миссенс-мутации приводят к возникновению фермента, обладающего высокой активностью в одних условиях и средней в других условиях. Т.к. генетический код вырожден, то при замене триплетов, кодирующий одну и ту же аминокислоту, мутации не проявляются. Другой вид мутаций – нонсенс — мутации. При этих мутациях при замене одного нуклеотида другим образуются бессмысленные триплеты. Синтез полипептида прекращается и белок имеет совсем иные свойства.
Генотип, фенотип, геном, генофонд
⇐ ПредыдущаяСтр 8 из 30Следующая ⇒Геноти́п — совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид (ещё отличием генотипа от генома является включение в понятие «геном» некодирующих последовательностей, не входящих в понятие «генотип»). Вместе с факторами внешней среды определяет фенотип организма.
Обычно о генотипе говорят в контексте определенного гена, у полиплоидных особей он обозначает комбинацию аллелей данного гена (см. гомозигота, гетерозигота). Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям:
1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма).
2. Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы, например, окраска шерсти животных, являются результатом взаимодействия нескольких генов по типу комплементарности.
Феноти́п (от греческого слова phainotip — являю, обнаруживаю) — совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешне средовых факторов. У диплоидных организмов в фенотипе проявляются доминантные гены.
Фенотип — совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития).
Несмотря на кажущееся строгое определение, концепция фенотипа имеет некоторые неопределенности. Во-первых, большинство молекул и структур кодируемых генетическим материалом, не заметны во внешнем виде организма, хотя являются частью фенотипа. Например, именно так обстоит дело с группами крови человека. Поэтому расширенное определение фенотипа должно включать характеристики, которые могут быть обнаружены техническими, медицинскими или диагностическими процедурами. Дальнейшее, более радикальное расширение может включать приобретенное поведение или даже влияние организма на окружающую среду и другие организмы. Например, согласно Ричарду Докинзу, плотину бобров также как и их резцы можно считать фенотипом генов бобра.[1]
Фенотип можно определить как «вынос» генетической информации навстречу факторам среды. В первом приближении можно говорить о двух характеристиках фенотипа: а) число направлений выноса характеризует число факторов среды, к которым чувствителен фенотип, — мерность фенотипа; б) «дальность» выноса характеризует степень чувствительности фенотипа к данному фактору среды. В совокупности эти характеристики определяют богатство и развитость фенотипа. Чем многомернее фенотип и чем он чувствительнее, чем дальше фенотип от генотипа, тем он богаче. Если сравнить вирус, бактерию, аскариду, лягушку и человека, то богатство фенотипа в этом ряду растет.
Гено́м — совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов.
Термин «геном» был предложен Гансом Винклером в 1920 г. для описания совокупности генов, заключённых в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими («избыточными») последовательностями нуклеотидов, которые не заключают в себе информации о белках и РНК.
Генетическая информация в клетках содержится не только в хромосомах ядра, но и во внехромосомных молекулах ДНК. У бактерий к таким ДНК относятся плазмиды и некоторые умеренные вирусы, в клетках эукариот — это ДНК митохондрий, хлоропластов и других органоидов клеток (См. плазмон). Объёмы генетической информации, заключённой в клетках зародышевой линии (предшественники половых клеток и сами гаметы) и соматических клетках, в ряде случаев существенно различаются. В онтогенезе соматические клетки могут утрачивать часть генетической информации клеток зародышевой линии, амплифицировать группы последовательностей и (или) значительно перестраивать исходные гены.
Следовательно, под геномом организма понимают суммарную ДНК гаплоидного набора хромосом и каждого из внехромосомных генетических элементов, содержащуюся в отдельной клетке зародышевой линии многоклеточного организма. В определении генома отдельного биологического вида необходимо учитывать, во-первых, генетические различия, связанные с полом организма, поскольку мужские и женские половые хромосомы различаются. Во-вторых, из-за громадного числа аллельных вариантов генов и сопутствующих последовательностей, которые присутствуют в генофонде больших популяций, можно говорить лишь о некоем усреднённом геноме, который сам по себе может обладать существенными отличиями от геномов отдельных особей. Размеры геномов организмов разных видов значительно отличаются друг от друга, и при этом часто не наблюдается корреляции между уровнем эволюционной сложности биологического вида и размером его генома.
Генофонд — понятие из популяционной генетики, описывающее совокупность всех генных вариаций (аллелей) определённой популяции. Популяция располагает всеми своими аллелями для оптимального приспособления к окружающей среде. Можно также говорить о едином генофонде вида, так как между разными популяциями вида происходит обмен генами.
Если во всей популяции существует лишь один аллель определённого гена, то популяция по отношению к вариантам этого гена называется мономорфной. При наличии нескольких разных вариантов гена в популяции она считается полиморфной.
Если у рассматриваемого вида имеется более чем один набор хромосом, то совокупное количество разных аллелей может превышать количество организмов. Однако в большинстве случаев количество аллелей всё же меньше. При сильном инбридинге часто возникают мономорфные популяции лишь с одним аллелем многих генов.
Одним из показателей объёма генофонда является эффективная величина популяции, сокращённо . У популяции людей с диплоидным набором хромосом может иметься максимально в два раза больше аллелей одного гена, чем индивидов, то есть <= 2 * (величины популяции). Исключены при этом половые хромосомы. Аллели всей популяци в идеальном случае распределены по закону Харди-Вайнберга.
Более крупный генофонд с множеством разных вариантов отдельных генов ведёт к лучшему приспособлению потомства к меняющейся окружающей среде. Разнообразие аллелей позволяет приспособиться к изменениям значительно быстрее, если соответствующие аллели уже имеются в наличии, чем если они должны появиться вследствие мутации. Тем не менее, в неизменяющейся окружающей среде меньшее число аллелей может быть более выгодным, чтобы при половом размножении не возникало слишком много неблагоприятных комбинаций.
Лекция — Генотип, фенотип, геном, генофонд
Геноти́п — совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид (ещё отличием генотипа от генома является включение в понятие «геном» некодирующих последовательностей, не входящих в понятие «генотип»). Вместе с факторами внешней среды определяет фенотип организма.
Обычно о генотипе говорят в контексте определенного гена, у полиплоидных особей он обозначает комбинацию аллелей данного гена (см. гомозигота, гетерозигота). Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям:
1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма).
2. Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы, например, окраска шерсти животных, являются результатом взаимодействия нескольких генов по типу комплементарности.
Феноти́п (от греческого слова phainotip — являю, обнаруживаю) — совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешне средовых факторов. У диплоидных организмов в фенотипе проявляются доминантные гены.
Фенотип — совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития).
Несмотря на кажущееся строгое определение, концепция фенотипа имеет некоторые неопределенности. Во-первых, большинство молекул и структур кодируемых генетическим материалом, не заметны во внешнем виде организма, хотя являются частью фенотипа. Например, именно так обстоит дело с группами крови человека. Поэтому расширенное определение фенотипа должно включать характеристики, которые могут быть обнаружены техническими, медицинскими или диагностическими процедурами. Дальнейшее, более радикальное расширение может включать приобретенное поведение или даже влияние организма на окружающую среду и другие организмы. Например, согласно Ричарду Докинзу, плотину бобров также как и их резцы можно считать фенотипом генов бобра.[1]
Фенотип можно определить как «вынос» генетической информации навстречу факторам среды. В первом приближении можно говорить о двух характеристиках фенотипа: а) число направлений выноса характеризует число факторов среды, к которым чувствителен фенотип, — мерность фенотипа; б) «дальность» выноса характеризует степень чувствительности фенотипа к данному фактору среды. В совокупности эти характеристики определяют богатство и развитость фенотипа. Чем многомернее фенотип и чем он чувствительнее, чем дальше фенотип от генотипа, тем он богаче. Если сравнить вирус, бактерию, аскариду, лягушку и человека, то богатство фенотипа в этом ряду растет.
Гено́м — совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов.
Термин «геном» был предложен Гансом Винклером в 1920 г. для описания совокупности генов, заключённых в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими («избыточными») последовательностями нуклеотидов, которые не заключают в себе информации о белках и РНК.
Генетическая информация в клетках содержится не только в хромосомах ядра, но и во внехромосомных молекулах ДНК. У бактерий к таким ДНК относятся плазмиды и некоторые умеренные вирусы, в клетках эукариот — это ДНК митохондрий, хлоропластов и других органоидов клеток (См. плазмон). Объёмы генетической информации, заключённой в клетках зародышевой линии (предшественники половых клеток и сами гаметы) и соматических клетках, в ряде случаев существенно различаются. В онтогенезе соматические клетки могут утрачивать часть генетической информации клеток зародышевой линии, амплифицировать группы последовательностей и (или) значительно перестраивать исходные гены.
Следовательно, под геномом организма понимают суммарную ДНК гаплоидного набора хромосом и каждого из внехромосомных генетических элементов, содержащуюся в отдельной клетке зародышевой линии многоклеточного организма. В определении генома отдельного биологического вида необходимо учитывать, во-первых, генетические различия, связанные с полом организма, поскольку мужские и женские половые хромосомы различаются. Во-вторых, из-за громадного числа аллельных вариантов генов и сопутствующих последовательностей, которые присутствуют в генофонде больших популяций, можно говорить лишь о некоем усреднённом геноме, который сам по себе может обладать существенными отличиями от геномов отдельных особей. Размеры геномов организмов разных видов значительно отличаются друг от друга, и при этом часто не наблюдается корреляции между уровнем эволюционной сложности биологического вида и размером его генома.
Генофонд — понятие из популяционной генетики, описывающее совокупность всех генных вариаций (аллелей) определённой популяции. Популяция располагает всеми своими аллелями для оптимального приспособления к окружающей среде. Можно также говорить о едином генофонде вида, так как между разными популяциями вида происходит обмен генами.
Если во всей популяции существует лишь один аллель определённого гена, то популяция по отношению к вариантам этого гена называется мономорфной. При наличии нескольких разных вариантов гена в популяции она считается полиморфной.
Если у рассматриваемого вида имеется более чем один набор хромосом, то совокупное количество разных аллелей может превышать количество организмов. Однако в большинстве случаев количество аллелей всё же меньше. При сильном инбридинге часто возникают мономорфные популяции лишь с одним аллелем многих генов.
Одним из показателей объёма генофонда является эффективная величина популяции, сокращённо. У популяции людей с диплоидным набором хромосом может иметься максимально в два раза больше аллелей одного гена, чем индивидов, то есть <= 2 * (величины популяции). Исключены при этом половые хромосомы. Аллели всей популяци в идеальном случае распределены по закону Харди-Вайнберга.
Более крупный генофонд с множеством разных вариантов отдельных генов ведёт к лучшему приспособлению потомства к меняющейся окружающей среде. Разнообразие аллелей позволяет приспособиться к изменениям значительно быстрее, если соответствующие аллели уже имеются в наличии, чем если они должны появиться вследствие мутации. Тем не менее, в неизменяющейся окружающей среде меньшее число аллелей может быть более выгодным, чтобы при половом размножении не возникало слишком много неблагоприятных комбинаций.