Граница болевых ощущений органов слуха: Слух — Википедия – Слух — это… Что такое Слух?

Автор: | 07.11.2020

Содержание

Слух — Википедия

Удовлетворительно объяснить феномен слуха оказалось необычайно сложной задачей. Человек, представивший теорию, объяснявшую бы восприятие высоты и громкости звука, почти наверняка гарантировал бы себе Нобелевскую премию.

Оригинальный текст (англ.)

Explaining hearing adequately has proven a singularly difficult task. One would almost ensure oneself a Nobel prize by presenting a theory explaining satisfactorily no more than the perception of pitch and loudness.

A. S. Reber, E. S. Reber

The Penguin Dictionary of Psychology, 2001[1].

Слух — способность биологических организмов воспринимать звуки органами слуха; специальная функция слухового аппарата, возбуждаемая звуковыми колебаниями окружающей среды, например, воздуха или воды. Одно из биологических дистантных ощущений

[2], называемое также акустическим восприятием. Обеспечивается слуховой сенсорной системой.

Человек способен слышать звук в пределах от 16 Гц до 20 кГц при передаче колебаний по воздуху, и до 220 кГц при передаче звука по костям черепа. Эти волны имеют важное биологическое значение, например, звуковые волны в диапазоне 100—4000 Гц соответствуют человеческому голосу. Звуки выше 20 000 Гц имеют малое практическое значение, так как быстро тормозятся; колебания ниже 60 Гц воспринимаются благодаря вибрационному чувству. Диапазон частот, которые способен слышать человек, называется слуховым или звуковым диапазоном; более высокие частоты называются ультразвуком, а более низкие — инфразвуком.

К изменениям фазы звукового сигнала слух практически нечувствителен.

[3]

Способность различать звуковые частоты сильно зависит от конкретного человека: его возраста, пола, наследственности, подверженности заболеваниям органа слуха, тренированности и усталости слуха. Некоторые люди способны воспринимать звуки относительно высокой частоты — до 22 кГц, а возможно и выше.

У человека, как и у большинства млекопитающих, органом слуха является ухо. У ряда животных слуховая перцепция осуществляется благодаря комбинации различных органов, которые могут значительно отличаться по своему строению от уха млекопитающих. Некоторые животные способны воспринимать акустические колебания, не слышимые человеком (ультра- или инфразвук). Летучие мыши во время полёта используют ультразвук для эхолокации. Собаки способны слышать ультразвук, на чём и основана работа беззвучных свистков. Существуют свидетельства того, что киты и слоны могут использовать инфразвук для общения.

Человек может различать несколько звуков одновременно благодаря тому, что в ушной улитке одновременно может быть несколько стоячих волн.

В начале 2011 г. в совместной работе двух израильских институтов было показано, что в человеческом мозге выделены специализированные нейроны, позволяющие оценить высоту звука вплоть до 0,1 тона. Животные, кроме летучих мышей, таким приспособлением не обладают, и для разных видов точность ограничена от 1/2 до 1/3 октавы.

[источник не указан 1165 дней]

Теории физиологии слуха[править | править код]

На сегодняшний день нет единой достоверной теории, объясняющей все аспекты восприятия звука человеком. Вот некоторые из них:

Поскольку достоверная теория слуха не разработана, на практике используются психоакустические модели, основанные на данных исследований, проводимых на различных людях[источник не указан 702 дня].

Слуховые следы, слияние слуховых ощущений[править | править код]

Опыт показывает, что ощущение, вызываемое коротким звуковым импульсом, длится ещё некоторое время после прекращения звучания. Поэтому два достаточно быстро следующих друг за другом звука дают одиночное слуховое ощущение, являющееся результатом их слияния. Как и при зрительном восприятии, когда отдельные изображения, сменяющие друг друга с частотой ≈ 16 кадров/сек и выше, сливаются в плавно текущее движение, синусоидальный чистый звук получается в результате слияния отдельных колебаний с частотой повторения равной нижнему порогу чувствительности слуха, то есть ≈ 16 Гц. Слияние слуховых ощущений имеет огромное значение для чёткости восприятия звуков и в вопросах консонанса и диссонанса, играющих огромную роль в музыке

[источник не указан 702 дня].

Проецирование наружу слуховых ощущений[править | править код]

Как бы ни возникали слуховые ощущения, мы относим их обыкновенно во внешний мир, и поэтому причину возбуждения нашего слуха мы всегда ищем в колебаниях, получаемых извне с того или другого расстояния. Эта черта в сфере слуха выражена гораздо слабее, нежели в сфере зрительных ощущений, отличающихся своей объективностью и строгой пространственной локализацией и, вероятно, приобретается также путём долгого опыта и контроля других чувств. При слуховых ощущениях способность к проецированию, объективированию и пространственной локализации не может достигнуть столь высоких степеней, как при зрительных ощущениях. Виной этому такие особенности строения слухового аппарата, как, например, недостаток мышечных механизмов, лишающий его возможности точных пространственных определений. Известно то огромное значение, какое имеет мышечное чувство во всех пространственных определениях.

Суждения о расстоянии и направлении звуков[править | править код]

Наши суждения о расстоянии, на котором издаются звуки, являются весьма неточными, в особенности если глаза человека закрыты и он не видит источника звуков и окружающие предметы, по которым можно судить об «акустике окружения» на основании жизненного опыта, либо акустика окружения нетипична: так, например, в акустической безэховой камере голос человека, находящегося всего в метре от слушающего, кажется последнему в несколько раз и даже в десятки раз более удалённым. Также знакомые звуки представляются нам тем более близкими, чем они громче, и наоборот. Опыт показывает, что мы менее ошибаемся в определении расстояния шумов, нежели музыкальных тонов. Способность суждения о направлении звуков у человека весьма ограничена: не имея подвижных и удобных для собирания звуков ушных раковин, он в случаях сомнений прибегает к движениям головы и ставит её в положение, при котором звуки различаются наилучшим образом, то есть звук локализируется человеком в том направлении, с которого он слышится сильнее и «яснее».

Способность человека (и высших животных) определять направление на источник звука называется бинауральным эффектом.

Известно три механизма, при помощи которых можно различить направление звука:

  • Разница в средней амплитуде (исторически первый обнаруженный принцип): для частот выше 1 кГц, то есть таких, что длина звуковой волны меньше, чем размер головы слушающего, звук, достигающий ближнего уха, имеет бо́льшую интенсивность.
  • Разница в фазе: ветвистые нейроны способны различать фазовый сдвиг до 10-15 градусов между приходом звуковых волн в правое и левое ухо для частот в примерном диапазоне от 1 до 4 кГц (что соответствует точности в определении времени прихода в 10 мкс).[источник не указан 19 дней]
  • Разница в спектре: складки ушной раковины, голова и даже плечи вносят в воспринимаемый звук небольшие частотные искажения, по-разному поглощая различные гармоники, что интерпретируется мозгом как дополнительная информация о горизонтальной и вертикальной локализации звука.

Возможность мозга воспринимать описанные различия в звуке, слышимым правым и левым ухом, привело к созданию технологии бинауральной записи.

Описанные механизмы не работают в воде: определение направления по разности громкостей и спектра невозможно, так как звук из воды проходит практически без потерь напрямую в голову, и значит в оба уха, из-за чего громкость и спектр звука в обоих ушах при любом расположении источника звука с высокой точностью одинаковы; определение направления источника звука по фазовому сдвигу невозможно, так как из-за гораздо более высокой в воде скорости звука длина волны возрастает в несколько раз, а значит, фазовый сдвиг многократно уменьшается.

Из описания приведённых механизмов понятна и причина невозможности определения расположения источников низкочастотного звука.

Слух проверяют с помощью специального устройства или компьютерной программы под названием «аудиометр».

Возможно определение ведущего уха с помощью специальных тестов. Например, в наушники подаются разные аудиосигналы (слова), а человек их фиксирует на бумаге. С какого уха больше правильно распознанных слов, то и ведущее[источник не указан 2634 дня].

Определяют и частотные характеристики слуха, что важно при постановке речи у слабослышащих детей.

Проверка слуха может быть осуществлена при помощи in situ аудиометрии, реализованной в виде мобильного приложения для смартфона. Диагностика слуха при помощи приложения позволяет пользователю самостоятельно провести тест слуха. Аналогично традиционной тональной аудиометрии, во время диагностики слуха при помощи мобильного приложения определяются пороги слухового восприятия тональных аудио сигналов (аудиограмма) для стандартного набора частот 125 Гц — 8 кГц.

[4][5] Полученные характеристики слуха пользователя, в дальнейшем, могут быть использованы для настройки слухового аппарата, выполненного в виде приложения для смартфона.[6]

Восприятие частотного диапазона 16 Гц − 20 кГц с возрастом изменяется — высокие частоты перестают восприниматься. Уменьшение диапазона слышимых частот связано с изменениями во внутреннем ухе (улитке) и развитием с возрастом нейросенсорной тугоухости.

Порог слышимости[править | править код]

Порог слышимости — минимальное звуковое давление, при котором звук данной частоты воспринимается ухом человека. Величину порога слышимости выражают в децибелах. За нулевой уровень принято звуковое давление 2⋅10−5 Па на частоте 1 кГц. Порог слышимости у конкретного человека зависит от индивидуальных свойств, возраста, физиологического состояния.

Порог болевого ощущения[править | править код]

Порог болевого ощущения слуховой — величина звукового давления, при котором в слуховом органе возникают боли (что связано, в частности, с достижением предела растяжимости барабанной перепонки). Превышение данного порога приводит к акустической травме. Болевое ощущение определяет границу динамического диапазона слышимости человека, который в среднем составляет 140 дБ для тонального сигнала и 120 дБ для шумов со сплошным спектром.

Учеными было установлено, что громкие звуки повреждают слух. Например, музыка на концертах или шум станков на производстве. Такое нарушение выражается в том, что человек в шумной обстановке часто ощущает гул в ушах и не различает речь. Изучением этого феномена занимается Чарльз Либерман из Гарварда. Данное явление называют «скрытой потерей слуха».

Звук попадает в уши, усиливается и преобразуется в электрические сигналы посредством волосковых клеток. Потеря этих клеток вызывает ухудшение слуха. Она может быть связана с громким шумом, приемом определённых медикаментов или с возрастом. Данное изменение выявляет стандартный тест, аудиограмма. Однако, Либерман отмечает, что есть и иные причины потери слуха, не связанные с уничтожением волосковых клеток, так как многие люди с хорошими показателями аудиограммы жалуются на ухудшение слуха. Проведенные исследования показали, что потеря синапсов (связей между волосковыми клетками) более, чем на половину является той самой причиной ухудшения слуха, которая не отображается на аудиограмме. На данный момент ещё не изобретено такого лекарства, которое могло бы избавить от данной проблемы, поэтому ученые советуют избегать мест с повышенным уровнем шума.[7]

  1. ↑ Reber AS, Reber ES, 2001.
  2. ↑ Ананьев, 1961.
  3. ↑ Оппенгейм, 1979, с. 373.
  4. Masalski, Marcin; Grysiński, Tomasz; Kręcicki, Tomasz. Hearing Tests Based on Biologically Calibrated Mobile Devices: Comparison With Pure-Tone Audiometry (англ.) // JMIR mHealth and uHealth : journal. — 2018. — 10 January (vol. 6, no. 1). — ISSN 2291-5222. — doi:10.2196/mhealth.7800. — PMID 29321124.
  5. Bright, Tess; Pallawela, Danuk. Validated Smartphone-Based Apps for Ear and Hearing Assessments: A Review (англ.) // JMIR Rehabilitation and Assistive Technologies : journal. — 2016. — 23 December (vol. 3, no. 2). — ISSN 2369-2529. — doi:10.2196/rehab.6074. — PMID 28582261.
  6. ↑ Вашкевич М. И., Азаров И. С., Петровский А. А., Косинусно-модулированные банки фильтров с фазовым преобразованием: реализация и применение в слуховых аппаратах. — Москва, Горячая линия-Телеком, 2014. — 210 с.
  7. ↑ Now hear this: Loud sound may pose more harm than we thought STAT News, 14 марта 2017
  • Ананьев Б. Г. Теория ощущений. — Л., 1961. — С. 579. — 928 с.
  • Физический энциклопедический словарь / Гл. ред. А. М. Прохоров. — М.: Сов. энцикл., 1983. — С. 579. — 928 с.
  • Arthur S. Reber, Emily Sarah Reber. The Penguin dictionary of psychology. — 3rd Edition. — London: Penguin Books Ltd, 2001. — 880 p. — ISBN 0-14-051451-1, ISBN 978-0-14-051451-3.
  • Оппенгейм А. В., Шафер Р. В. Цифровая обработка сигналов = Digital Signal Processing (рус.) / Пер. с англ./Под ред. С. Я. Шаца.. — М.: Связь, 1979. — 416 с. — ISBN 5-09-002630-0.

Слух — это… Что такое Слух?

Слух — способность биологических организмов воспринимать звуки органами слуха; специальная функция слухового аппарата, возбуждаемая звуковыми колебаниями окружающей среды, например, воздуха или воды. Одно из биологических пяти чувств, называемое также акустичеcким восприятием.

Общие сведения

Человек способен слышать звук в пределах от 16 Гц до 22 кГц при передаче колебаний по воздуху, и до 220 кГц при передаче звука по костям черепа. Эти волны имеют важное биологическое значение, например, зву­ковые волны в диапазоне 300—4000 Гц соответствуют человеческому голосу. Звуки выше 20 000 Гц имеют малое практическое значение, так как быстро тормозятся; колебания ниже 60 Гц воспринимаются благодаря вибрационному чувству. Диапазон частот, которые способен слышать человек, называется слуховым или звуковым диапазоном; более высокие частоты называются ультразвуком, а более низкие — инфразвуком.

Физиология слуха

Способность различать звуковые частоты сильно зависит от конкретного человека: его возраста, пола, подверженности слуховым болезням, тренированности и усталости слуха. Отдельные личности способны воспринимать звук до 22 кГц, а возможно — и выше.

Некоторые животные могут слышать звуки, не слышимые человеком (ультра- или инфразвук). Летучие мыши во время полёта используют ультразвук для эхолокации. Собаки способны слышать ультразвук, на чём и основана работа беззвучных свистков. Существуют свидетельства того, что киты и слоны могут использовать инфразвук для общения.

Человек может различать несколько звуков одновременно благодаря тому, что в ушной улитке одновременно может быть несколько стоячих волн.

Удовлетворительно объяснить феномен слуха оказалось необычайно сложной задачей. Человек, представивший теорию, объяснявшую бы восприятие высоты и громкости звука, почти наверняка гарантировал бы себе Нобелевскую премию.

Оригинальный текст  (англ.)  

Explaining hearing adequately has proven a singularly difficult task. One would almost ensure oneself a Nobel prize by presenting a theory explaining satisfactorily no more than the perception of pitch and loudness.

Ребер, Артур С., Ребер (Робертс), Эмили С. The Penguin Dictionary of Psychology. — 3rd Edition. — Лондон: Penguin Books Ltd, 2001. — 880 с. — ISBN 0-14-051451-1, ISBN 978-0-14-051451-3

В начале 2011 г. в отдельных СМИ, связанных с научной тематикой, прошло краткое сообщение о совместной работе двух израильских институтов. В человеческом мозге выделены специализированные нейроны, позволяющие оценить высоту звука, вплоть до 0,1 тона. Животные, кроме летучих мышей, таким приспособлением не обладают, и для разных видов точность ограничена от 1/2 до 1/3 октавы. (Внимание! Данная информация требует уточнения!)

Психофизиология слуха

У человека, как и у большинства млекопитающих, слуховым органом является ухо. Многие другие животные также обладают слухом, благодаря аналогичным ушным органам или даже комбинации различных органов, которые могут значительно отличаться своим строением.

Теории физиологии слуха

На сегодняшний день нет единой достоверной теории, объясняющей все аспекты восприятия звука человеком. Вот некоторые из них:

  • Струнная теория Гельмгольца
  • Теория бегущей волны Бекеши
  • Микрофонная теория
  • Электро-механическая теория

Поскольку достоверная теория слуха не разработана, на практике используются психоакустические модели, основанные на данных исследований, проводимых на различных людях.

Слуховые следы, слияние слуховых ощущений

Опыт показывает, что ощущение, вызываемое коротким звуковым импульсом, длится ещё некоторое время после прекращения звучания. Поэтому два достаточно быстро следующих друг за другом звука дают одиночное слуховое ощущение, являющееся результатом их слияния. Как и при зрительном восприятии, когда отдельные изображения, сменяющие друг друга с частотой ≈ 16 кадров/сек и выше, сливаются в плавно текущее движение, синусоидальный чистый звук получается в результате слияния отдельных колебаний с частотой повторения равной нижнему порогу чувствительности слуха, то есть ≈ 16 Гц. Слияние слуховых ощущений имеет огромное значение в чёткости восприятия звуков и в вопросах консонанса и диссонанса, играющих огромную роль в музыке.

Проецирование наружу слуховых ощущений

Как бы ни возникали слуховые ощущения, мы относим их обыкновенно во внешний мир, и поэтому причину возбуждения нашего слуха мы всегда ищем в колебаниях, получаемых извне с того или другого расстояния. Эта черта в сфере слуха выражена гораздо слабее, нежели в сфере зрительных ощущений, отличающихся своей объективностью и строгой пространственной локализацией и, вероятно, приобретается также путём долгого опыта и контроля других чувств. При слуховых ощущениях способность к проецированию, объективированию и пространственной локализации не может достигнуть столь высоких степеней, как при зрительных ощущениях. Виной этому такие особенности строения слухового аппарата, как, например, недостаток мышечных механизмов, лишающий его возможности точных пространственных определений. Известно то огромное значение, какое имеет мышечное чувство во всех пространственных определениях.

Суждения о расстоянии и направлении звуков

Наши суждения о расстоянии, на котором издаются звуки, являются весьма неточными, в особенности если глаза человека закрыты и он не видит источника звуков и окружающие предметы, по которым можно судить об «акустике окружения» на основании жизненного опыта, либо акустика окружения нетипична: так, например, в акустической безэховой камере голос человека, находящегося всего в метре от слушающего, кажется последнему в разы и даже десятки раз более удалённым. Также знакомые звуки представляются нам тем более близкими, чем они громче, и наоборот. Опыт показывает, что мы менее ошибаемся в определении расстояния шумов, нежели музыкальных тонов. Способность суждения о направлении звуков у человека весьма ограничена: не имея подвижных и удобных для собирания звуков ушных раковин, он в случаях сомнений прибегает к движениям головы и ставит её в положение, при котором звуки различаются наилучшим образом, то есть звук локализируется человеком в том направлении, с которого он слышится сильнее и «яснее».

Способность человека (и высших животных) определять направление на источник звука называется бинауральным эффектом.

Известно три механизма, при помощи которых можно различить направление звука:

  • Разница в средней амплитуде (исторически первый обнаруженный принцип): для частот выше 1 кГц, то есть таких, что длина звуковой волны меньше, чем размер головы слушающего, звук, достигающий ближнего уха, имеет бо́льшую интенсивность.
  • Разница в фазе: ветвистые нейроны способны различать фазовый сдвиг до 10-15 градусов между приходом звуковых волн в правое и левое ухо для частот в примерном диапазоне от 1 до 4 кГц (что соответствует точности в определении времени прихода в 10 мкс).
  • Разница в спектре: складки ушной раковины, голова и даже плечи вносят в воспринимаемый звук небольшие частотные искажения, по-разному поглощая различные гармоники, что интерпретируется мозгом как дополнительная информация о горизонтальной и вертикальной локализации звука.

Возможность мозга воспринимать описанные различия в звуке, слышимым правым и левым ухом, привело к созданию технологии бинауральной записи.

Описанные механизмы не работают в воде: определение направления по разности громкостей и спектра невозможно, так как звук из воды проходит практически без потерь напрямую в голову, и значит в оба уха, из-за чего громкость и спектр звука в обоих ушах при любом расположении источника звука с высокой точностью одинаковы; определение направления источника звука по фазовому сдвигу невозможно, так как из-за гораздо более высокой в воде скорости звука длина волны возрастает в несколько раз, а значит фазовый сдвиг многократно уменьшается.

Из описания приведённых механизмов понятна и причина невозможности определения расположения источников низкочастотного звука.

Исследование слуха

Слух проверяют с помощью специального устройства или компьютерной программы под названием «аудиометр».

Определяют и частотные характеристики слуха, что важно при постановке речи у слабослышащих детей.

Норма

Восприятие частотного диапазона 16 Гц − 22 кГц с возрастом изменяется — высокие частоты перестают восприниматься. Уменьшение диапазона слышимых частот связано с изменениями во внутреннем ухе (улитке) и с развитием с возрастом нейросенсорной тугоухости.

Порог слышимости

Порог слышимости — минимальное звуковое давление, при котором звук данной частоты воспринимается ухом человека. Величину порога слышимости выражают в децибелах. За нулевой уровень принято звуковое давление 2·10−5Па на частоте 1 кГц. Порог слышимости у конкретного человека зависит от индивидуальных свойств, возраста, физиологического состояния.

Порог болевого ощущения

Порог болевого ощущения слуховой — величина звукового давления, при котором в слуховом органе возникают боли (что связано, в частности, с достижением предела растяжимости барабанной перепонки). Превышение данного порога приводит к акустической травме. Болевое ощущение определяет границу динамического диапазона слышимости человека, который в среднем составляет 140 дБ для тонального сигнала и 120 дБ для шумов со сплошным спектром.

Патология

См. также

Литература

Физический энциклопедический словарь/Гл. ред. А. М. Прохоров. Ред. коллегия Д. М. Алексеев, А. М. Бонч-Бруевич, А. С. Боровик-Романов и др. — М.: Сов. энцикл., 1983. — 928 с., стр. 579

Ссылки

Основные понятия о звуке с позиции медицинской и биологической физики

Основные понятия о звуке с позиции медицинской и биологической физики

Доктор мед.наук, профессор Фёдорова В.Н. и Степанова Л.А, (из краткого курса медицинской и биологической физики для медицинских ВУЗов). 

Акустика – это раздел физики, который изучает упругие волны от самых низких частот до самых высоких. Звуковые явления, изучаемые в акустике, чрезвычайно важны для медицины, особенно для оценки слуховых ощущений. Акустика – это наука о звуке.

                               ЗВУК, ВИДЫ ЗВУКА

Звук – этоупругие колебания и волны, распространяющиеся в газообразных, жидких и твёрдых веществах. Звук — это явление, субъективно воспринимаемое органами слуха человека и животных.

В норме ухо человека слышит звук в диапазоне частот от 16 Гц до 20 кГц. С возрастом верхняя граница этого диапазона уменьшается.

ВОЗРАСТ

Верхняя граница частоты в Герцах

Маленькие дети

22.000 Гц

До 20 лет

20.000 Гц

35 лет

В среднем около 15.000 Гц.

50 лет

В среднем около 12.000 Гц.

Инфразвук — это звук с частотой ниже 16-20 Гц. выше 20 к Гц.

Ультразвук — это звук с частотой больше 20 кГц.

Гиперзвук – это самые высокочастотные упругие волны в диапазоне от 10 в 9-й степени до 10 в 12-й степени. 

Звуки, встречающиеся в природе, бывают разных видов.

Тон – это звук, представляющий собой периодический процесс. Его основной характеристикой является частота.

Простой тон создаётся телом, колеблющемся по гармоническому закону (например, камертоном). Сложный тон создаётся периодическими колебаниями, которые не являются гармоническими (например, звук музыкального инструмента, звук, создаваемый речевым аппаратом человека).

Шум – это звук, имеющий сложную неповторяющуюся временную зависимость и представляющий собой сочетание беспорядочно изменяющихся сложных тонов. Акустический спектр шума — сплошной (шорох, скрип, шелест листьев).

Звуковой удар – это кратковременное звуковое воздействие (хлопок, взрыв, удар, гром).

Сложный тон, как периодический процесс, можно представить в виде суммы простых тонов (разложить на составляющие тоны). Такое разложение называется спектром.

Акустический спектр тона – это совокупность всех его частот с указанием их относительных интенсивностей или амплитуд.

Наименьшая частота в спектре соответствует основному тону, а остальные частоты называют обертонами или гармониками. Обертоны имеют частоты, кратные основной частоте. Наибольшая амплитуда спектра соответствует основному тону. Именно он воспринимается ухом как высота звука. Обертоны создают «окраску» звука. Звуки одной и той же высоты, созданные разными инструментами, воспринимаются ухом по-разному именно из-за различного соотношения между амплитудами обертонов.

                      ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЗВУКА

1. Скорость.

Звук распространяется в любой среде, кроме вакуума. Скорость его распространения зависит от упругости, плотности и температуры среды, но не зависит от частоты колебаний. Скорость звука в  воздухе, при нормальных условиях равна примерно 330 м/с (примерно 1200 км/ч).

От давления скорость звука не зависит. Скорость звука в воде равна 1500 м/с (примерно 5400 км/ч), близкое значение имеет скорость звука и в мягких тканях организма.

2. Звуковое давление.

Распространение звука сопровождается изменением давления в среде. Именно изменения давления вызывают колебания барабанной перепонки, которые и определяют начало такого сложного процесса как возникновение слуховых ощущений.

Звуковое давление – это амплитуда тех изменений давления в среде, которые возникают при прохождении звуковой волны.   

3. Интенсивность звука.

Распространение звуковой волны сопровождается переносом энергии.

Интенсивность звука – это плотность потока энергии, переносимой звуковой волной.

В однородной среде интенсивность звука, испущенного в данном направлении, убывает по мере удаления от источника звука. Ушная раковина выполняет функцию волновода, за счёт которого увеличивается интенсивность звука.           

Порог слышимости – это минимальный порог восприятия звука нормальным человеческим ухом.

Порог болевого ощущения – это звук такой интенсивности, при которых человек перестаёт слышать и у него возникают ощущения давления и боли.

4. Уровень интенсивности.

Отношение интенсивностей, соответствующих порогам слышимости и болевого ощущения, столь велико, что на практике используют логарифмическую шкалу, вводя специальную безразмерную характеристику – уровень интенсивности.

Уровнем интенсивности – называют десятичный логарифм отношения интенсивности звука к порогу слышимости.

Единицей измерения уровня интенсивности является БЕЛ (Б). Обычно используют более мелкую единицу уровня интенсивности – децибел (дБ).

Если человек слышит звуки, приходящие с одного направления от нескольких некогерентных источников, то их интенсивности складываются.

Высокий уровень интенсивности звука, приводит к необратимым изменениям в слуховом аппарате. Так звук в 160 дБ может вызвать разрыв барабанной перепонки и смещение слуховых косточек в среднем ухе, что приводит к необратимой глухоте. При 140 дБ человек ощущает сильную боль, а продолжительное действие шума в 90-120 дБ приводит к поражению слухового нерва.  

           ХАРАКТЕРИСТИКИ СЛУХОВОГО ОЩУЩЕНИЯ. ЗВУКОВЫЕ ИЗМЕРЕНИЯ

Звук является объектом слухового ощущения. Он оценивается человеком субъективно. Все субъективные характеристики слухового ощущения связаны с объективными характеристиками звуковой волны.

Высота. Тембр.

Воспринимая звуки, человек различает их по высоте и тембру. Высота тона прежде всего обусловлена частотой основного тона (чем больше частота, тем более высоким воспринимается звук). В меньшей степени высота зависит от интенсивности звука (звук большей интенсивности воспринимается более низким). Тембр — это характеристика звукового ощущения, которая

определяется его гармоническим спектром. Тембр звука зависит от числа обертонов и от их относительных интенсивностей.

Громкостью звука называют интенсивность (силу) слуховых ощущений.

Ухо человека имеет различную чувствительность к звукам различных частот. Для учёта этого обстоятельства можно выбрать некоторую опорную частоту, а восприятие остальных частот сравнивать с нею. По договоренности опорную частоту приняли равной 1 кГц (по этой причине и порог слышимости Io установлен для этой частоты).

Для чистого тона с частотой 1 кГц громкость (Е) принимают равной уровню интенсивности в децибелах: Е = 10 Ig (I/Io).

Для остальных частот громкость определяют путём сравнения интенсивности слуховых ощущений с громкостью звука на опорной частоте.

Громкость звука равна уровню интенсивности звука (Дб) на частоте 1 кГц, вызывающего у «среднего» человека такое же ощущение громкости, что и данный звук.

Единицу громкости звука называют фоном.

Ниже приводится пример зависимости уровня громкости от частоты при уровне интенсивности 60 дБ.

Частота, Гц

50

100

200

500

1000

2000

5000

10 000

Громкость, фон

10

30

47

57

60

64

59

49

                             ЗВУКОВЫЕ ИЗМЕРЕНИЯ

Для оценки слуха конкретного человека применяется метод тональной пороговой аудиометрии.

Аудиометрия – это метод измерения остроты слуха.

На специальном приборе (аудиометре) определяется порог слухового ощущения, или порог восприятия, Lп на разных частотах. Для этого с помощью звукового генератора создают звук заданной частоты и, увеличивая уровень интенсивности L, фиксируют пороговый уровень интенсивности Lп, при котором у испытуемого появляются слуховые ощущения. Нарушение функции звуковоспринимающего аппарата может привести к тугоухости – стойкому снижению чувствительности к различным тонам и шёпотной речи.

Для измерения громкости сложного тона или шума используют специальные приборы – шумометры. Звук, принимаемый микрофоном, преобразуется в электрический сигнал, который пропускается через систему фильтров. Параметры фильтров подобраны так, что чувствительность шумометра на разных частотах близка к чувствительности человеческого уха.  

 

               ПРОХОЖДЕНИЕ ЗВУКА ЧЕРЕЗ ГРАНИЦУ РАЗДЕЛА СРЕД

При падении звуковой волны на границу раздела между двумя средами звук частично отражается, а частично проникает во вторую среду. Интенсивности отражённой и прошедшей через границу волн определяются соответствующими коэффициентами.

Коэффициент отражения (r) – величина, равная отношению интенсивностей отражённой и падающей волн:  r = I отр / I пад

Коэффициент проникновения (B) – величина, равная отношению интенсивностей прошедшей и падающей волн:  B = I прош / I пад

Сумма коэффициентов отражения и преломления равна единице:  r + B = 1

Для расчёта коэффициентов отражения и проникновения используется специальная физическая величина, называемая волновым сопротивлением.

Волновым сопротивлением среды (Rа) — называется произведение плотности среды (р) на скорость распространения звука (v): Ra = pv

Величины коэффициентов отражения и проникновения определяются отношением (х) волновых сопротивлений граничащих сред:  x = Rменьшее : Rбольшее

При нормальном падении звуковой волны на границу раздела сред справедливы следующие формулы:  r = (1-x : 1+x) в квадрате. Формула 3.9          B = 4x/(1+x) в квадрате.

Из формулы 3.9 видно, что чем сильнее различаются волновые сопротивления сред, тем большая доля энергии отражается на границе раздела. В частности, если величина «х» близка к нулю, то коэффициент отражения близок к единице. Например, для границы воздух-вода: х (отношение волновых сопротивлений) = 3х10 в минус 4 степени, а r (коэффициент отражения) = 99,88%. То есть отражение является практически полным.

Важно, что значение коэффициентов отражения и преломления не зависят от того порядка, в котором звук проходит данные среды. Например, для перехода звука из воздуха в воду значения коэффициентов такие же. Как для перехода в обратном направлении.  

                         ЗВУКОВЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ

Звук может быть источником информации о состоянии органов человека.

  1. АУСКУЛЬТАЦИЯ – непосредственное выслушивание звуков, возникающих внутри организма. По характеру таких звуков можно определить, какие именно процессы протекают в данной области тела, и в некоторых случаях установить диагноз.

Приборы, применяемые для выслушивания: стетоскоп и фонендоскоп. При помощи которых выслушиваются дыхательные шумы, хрипы, тоны сердца, шумы в сердце, движение плода в утробе матери.

В клинике используются установки, в которых выслушивание осуществляется при помощи микрофона и динамика. Широко применяется запись звуков на цифровой носитель, что даёт возможность их воспроизведения.

2. ФОНОКАРДИОГРАФИЯ — графическая регистрация тонов и шумов сердца и их диагностическая интерпретация. Запись осуществляется при помощи фонокардиографа, который состоит из микрофона, усилителя, частотных фильтров, регистрирующего устройства.

3. ПЕРКУССИЯ – исследование внутренних органов посредством постукивания по поверхности тела и анализ возникающих при этом звуков. Постукивание осуществляется либо с помощью специальных молоточков, либо при помощи пальцев.

Если в замкнутой полости вызвать звуковые колебания, то при определённой частоте звука воздух в полости начнёт резонировать, усиливая тот тон, который соответствует размеру полости и её положению. Схематично тело человека можно представить суммой разных объёмов: газонаполненных (лёгкие), жидких (внутренние органы), твёрдых (кости). При ударе по поверхности тела возникают колебания с разными частотами. Часть из них погаснет. Другие совпадут с собственными частотами пустот, следовательно, усилятся и из-за резонанса будут слышны. По тону перкуторных звуков определяют состояние и топографию органа.

   ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ ПРОФИЛАКТИКУ ШУМА. ЗАЩИТА ОТ ШУМА

Для профилактики шума необходимо знать основные факторы, определяющие его воздействие на организм человека: близость источника шума, интенсивность шума, длительность воздействия, ограниченность пространства, в котором действует шум.

Длительное воздействие шума вызывает сложный симптоматический комплекс функциональных и органических изменений в организме (не только органа слуха).

Воздействие длительного шума на ЦНС проявляется в замедлении всех нервных реакций, сокращении времени активного внимания, снижении работоспособности.

После длительного действия шума изменяется ритм дыхания, ритм сердечных сокращений, возникает усиление тонуса сосудистой системы, что приводит к повышению систолического и диастолического уровня кровяного давления.

Изменяется двигательная и секреторная деятельность желудочно-кишечного тракта, наблюдается гиперсекреция отдельных желёз внутренней секреции. Имеет место повышение потливости. Отмечается подавление психических функций, особенно памяти.

Специфическое действие оказывает шум на функции органа слуха. Ухо, как и все органы чувств, способно адаптироваться к шуму. При этом под действием шума порог слышимости повышается на 10-15 дБ. После прекращения шумового воздействия нормальное значение порога слышимости восстанавливается только через 3-5 минут. При высоком уровне интенсивности шума (80-90 дБ) его утомляющее действие резко усиливается. Одной из форм расстройства функции органа слуха, связанной с длительным воздействием шума, является тугоухость.

Сильное воздействие как на физическое, так и на психологическое состояние человека оказывает рок-музыка. Современная рок-музыка создаёт шум в диапазонах от 10 Гц до 80 кГц. Экспериментально установлено, что если основной ритм, задаваемый ударными инструментами, имеет частоту 1,5 Гц и имеет мощное музыкальное сопровождение на частотах 15-30 Гц, то у человека наступает сильное возбуждение. При ритме с частотой 2 Гц, при таком же сопровождении человек впадает в состояние, близкое к наркотическому опьянению. На рок-концертах интенсивность звука может превышать 120 дБ, хотя человеческое ухо настроенно наиболее благоприятно на среднюю интенсивность 55 дБ. При этом могут возникать контузии звуком, звуковые «ожоги», потеря слуха и памяти.

Шум оказывает вредное воздействие на орган зрения. Так, длительное воздействие производственного шума на человека. Находящегося в затемнённом помещении, приводит к заметному снижению активности сетчатки глаза, от которой зависит работа глазного нерва, а следовательно, и острота зрения.  

Защита от шума достаточно сложна. Это связано с тем, что вследствие сравнительно большой длины волны звук огибает препятствия (дифракция) и звуковая тень не образуется. Для борьбы с шумами, проникающими в жилые помещения, большое значение имеют правильное планирование расположение зданий, учёт розы ветров, создание защитных зон, в том числе и растительных. Растения – хороший гаситель шума. Деревья и кустарники могут снижать уровень интенсивности шума на 5-20 дБ. Эффективны зелёные полосы между тротуаром и мостовой. Лучше всего шум гасят липы и ели. Дома, находящиеся позади высокого хвойного заслона, могут быть избавлены от шумов улицы почти полностью.

Борьба с шумом не предполагает создание абсолютной тишины, так как при длительном отсутствии слуховых ощущений у человека могут возникать расстройства психики. Абсолютная тишина и длительный повышенный шум одинаково противоестественны для человека.

Граница болевых ощущений органов слуха. Динамический диапазон слуха

Понятие звука и шума. Сила звука.

Звук — физическое явление, представляющее собой распространение в виде упругих волн механических колебаний в твёрдой, жидкой или газообразной среде. Как и любая волна, звук характеризуется амплитудой и спектром частот. Амплитудой звуковой волны называется разница между самым высоким и самым низким значением плотности. Частотой звука называется количество колебаний воздуха в секунду. Частота измеряется в Герцах (Гц).

Волны с разной частотой воспринимаются нами как звук разной высоты. Звук частотой ниже 16 – 20 Гц (диапазона слышимости человека) называют инфразвуком; от 15 – 20 кГц до 1 ГГц, – ультразвуком, от 1 ГГц – гиперзвуком. Среди слышимых звуков можно выделить фонетические (речевые звуки и фонемы, из которых состоит устная речь) и музыкальные звуки (из которых состоит музыка). Музыкальные звуки содержат не один, а несколько тонов, а иногда и шумовые компоненты в широком диапазоне частот.

Шум является разновидностью звука, он воспринимается людьми как неприятный, мешающий или даже вызывающий болезненные ощущения фактор, создающие акустический дискомфорт.

Для количественной оценки звука используют усредненные параметры, определяемые на основании статистических законов. Сила звука — устаревший термин, описывающий величину, подобную интенсивности звука, но не идентичную ей. Она зависит от длины волны. Единица измерения силы звука — бел (Б) . Уровень звука чаще всего измеряют в децибелах (это 0,1Б). Человек на слух может обнаружить разницу в уровне громкости приблизительно в 1 дБ.

Для измерения акустического шума, Стивеном Орфилдом, была основана в Южном Миннеаполисе «Лаборатория Орфилд». Чтобы достичь исключительной тишины, в комнате использованы стекловолоконные акустические платформы толщиной в метр, двойные стены из изолированной стали и бетон толщиной в 30 см. Комната блокирует 99,99 процентов внешних звуков и поглощает внутренние. Эта камера используется многими производителями для тестирования громкости своих продуктов,

Границы слухового восприятия шумов органами слуха человека

Шум как гигиенический фактор — это совокупность звуков различной частоты и интенсивности, которые воспринимаются органами слуха человека и вызывают неприятное субъективное ощущение.

Шум как физический фактор представляет собой волнообразно распространяющееся механическое колебательное движение упругой среды, носящее обычно случайный характер.

Производственным шумом называется шум на рабочих местах, на участках или на территориях предприятий, который возникает во время производственного процесса.

Следствием вредного действия производственного шума могут быть профессиональные заболевания, повышение обшей заболеваемости, снижение работоспособности, повышение степени риска травм и несчастных случаев, связанных с нарушением восприятия предупредительных сигналов, нарушение слухового контроля функционирования технологического оборудования, снижение производительности труда.

По характеру нарушения физиологических функций шум разделяется на такой, который мешает (препятствует языковой связи), раздражающий — (вызывает нервное напряжение и вследствие этого — снижения работоспособности, общее переутомление), вредный (нарушает физиологические функции на длительный период и вызывает развитие хронических заболеваний, которые непосредственно связаны со слуховым восприятием: ухудшение слуха, гипертония, туберкулез, язва желудка), травмирующий (резко нарушает физиологические функции организма человека).

Характер производственного шума зависит от вида его источников. Механический шум возникает в результате работы различных механизмов с неуравновешенными массами вследствие их вибрации, а также одиночных или периодических ударов в сочленениях деталей сборочных единиц или конструкций в целом. Аэродинамический шум образуется при движении воздуха по трубопроводам, вентиляционным системам или вследствие стационарных или нестационарных процессов в газах.

Шум электромагнитного происхождения возникает вследствие колебаний элементов электромеханических устройств (ротора, статора, сердечника, трансформатора и т. д.) под влиянием переменных магнитных полей. Гидродинамический шум возникает вследствие процессов, которые происходят в жидкостях (гидравлические удары, кавитация, турбулентность потока и т.д.).

Шум как физическое явление — это колебание упругой среды. Он характеризуется звуковым давлением как функцией частоты и времени. С физиологической точки зрения шум определяется как ощущение, которое воспринимается органами слуха во время действия на них звуковых волн в диапазоне частот 16—20000 Гц.

Процесс распространения колебательного движения в среде называется звуковой волной, а область среды, в которой она распространяется — звуковым полем.

Звуковыми волнами называют колебательные возмущения, которые распространяются от источника шума в окружающую среду.

Длина волны — это расстояние, которое проходит звуковая волна в течение периода колебания (расстояние между двумя соседними слоями воздуха, которые имеют одинаковое звуковое давление, измеренное одновременно).

Звук, который распространяется в воздушной среде, называется воздушным звуком, в твердых телах — структурным. Часть воздуха, охваченная колебательным процессом, называется звуковым полем. Свободным называется звуковое поле, в котором звуковые волны распространяются свободно, без препятствий (открытое пространство, акустические условия в специальной заглушенной камере, облицованной звукопоглощающим материалом).

Диффузным называется звуковое поле, в котором звуковые волны поступают в каждую точку пространства с одинаковой вероятностью со всех сторон (встречается в помещениях, внутренние поверхности которых, имеют высокие коэффициенты отражения звука).

В реальных условиях (помещение или территория предприятия) структура звукового поля может быть качественно близкой (или промежуточной) к предельным значениям свободного или диффузного звукового поля.

Воздушный звук распространяется в виде продольных волн, то есть волн, в которых колебания частичек воздуха совпадают с направлением движения звуковой волны.

Наиболее распространена форма продольных звуковых колебаний — сферическая волна. Ее излучает равномерно во все стороны источник звука, размеры которого малы по сравнению с длиной волны.

Структурный звук распространяется в виде продольных и поперечных волн. Поперечные волны отличаются от продольных тем, что колебания в них происходят в направлении, перпендикулярном направлению распространения волны. Движение звуковой волны в воздухе сопровождается периодическим повышением и понижением давления. Давление, которое превышает атмосферное, называется акустическим, или звуковым давлением. Чем большее звуковое давление, тем громче звук.

Мерой интенсивности звуковых волн в любой точке пространства является величина звукового давления — избыточное давление в данной точке среды по сравнению с давлением при отсутствии звукового поля. Единица измерения звукового давления р, Н/м2; 1 Н/м2 = 1 Па (Паскаль). Существуют нижняя и верхняя границы слышимости. Нижняя граница слышимости называется порогом слышимости, верхняя — болевым порогом. Порогом слышимости называется наименьшее изменение звукового давления, которое мы ощущаем. При частоте 1000 Гц (на этой частоте ухо имеет наибольшую чувствительность) порог слышимости составляет Р = 2-105 Н/м2. Порог слышимости воспринимает приблизительно 1% людей.

Болевой порог — это максимальное звуковое давление, которое воспринимается ухом как звук. Давление свыше болевого порога может вызывать повреждение органов слуха. При частоте 1000 Гц в качестве болевого порога принято звуковое давление Р — 20 Н/м2. Отношение звуковых давлений при болевом пороге и пороге слышимости составляет 106. Это диапазон звукового давления, который воспринимается ухом.

Для более полной характеристики источников шума введено понятие звуковой энергии, которая излучается источниками шума в окружающую среду за единицу времени.

Величина потока звуковой энергии, которая проходит в течение 1 с через площадь 1 м2 перпендикулярно к направлению распространения звуковой волны, является мерой интенсивности звука или силы звука.

В связи с тем, что между слуховым восприятием и раздражением существует приблизительно логарифмическая зависимость, для измерения звукового давления, силы звука и звуковой мощности принята логарифмическая шкала. Это позволяет большой диапазон значений (по звуковому давлению —106, по силе звука —1012) вложить в сравнительно небольшой интервал логарифмических единиц. В логарифмической шкале каждая следующая степень этой шкалы больше предыдущей в 10 раз. Это условно считается единицей измерения 1 Бел (Б). В акустике используется более мелкая единица децибел (дБ), равная 0,1 Б.

Величина, выраженная в белах или децибелах, называется уровнем этой величины. Если сила одного звука больше другого в 100 раз, то равные силы звука отличаются на 1^100=2Б, или 20 дБ.

Область слышимых звуков ограничивается не только определенными частотами (20—20 000 Гц), но и определенными предельными значениями звуковых давлений и их уровней. На рис. 1 эти предельные значения уровней звукового давления изображены двумя кривыми. Нижняя кривая соответствует порогу (началу) слышимости. Уместно напомнить, что логарифмическая шкала уровней звукового давления построена таким образом, что пороговое значение звукового давления рд соответствует порогу слышимости (L = 0 дБ) только на частоте 1000 Гц, принятой в качестве стандартной частоты сравнения в акустике. Порог слышимости различен для звуков разной частоты. Если в диапазоне частот- 800— 4000 Гц величина порога слышимости минимальна, то по мере удаления от этой области вверх и вниз по частотной шкале его величина растет; особенно заметно увеличения порога слышимости на низких частотах. По этой причине высокочастотные звуки более неприятны для человека, чем низкочастотные (при одинаковых уровнях звукового давления).

Верхняя кривая на рис. 1 соответствует порогу болевого ощущения (I = 120—130 дБ). Звуки, превышающие по своему уровню этот порог, могут вызвать боли и повреждения в слуховом аппарате.

Область по частотной шкале, лежащая между этими кривыми, называется областью слухового восприятия.

В зависимости от уровня и характера шума, его продолжительности, а также от индивидуальных особенностей человека шум может оказывать на него различное действие.

Действие шума на организм человека.

Шум, даже когда он невелик (при уровне 50—60 дБА), создает значительную нагрузку на нервную систему человека, оказывая на него психологическое воздействие. Это особенно часто наблюдается у людей, занятых умственной деятельностью. Слабый шум различно влияет на людей. Причиной этого могут быть: возраст, состояние здоровья, вид труда, физическое и душевное состояние человека в момент действия шума и другие факторы.

Степень вредности какого-либо шума зависит также от того, насколько он отличается от привычного шума. Неприятное воздействие шума зависит и от индивидуального отношения к нему. Так, шум, производимый самим человеком, не беспокоит его, в то время как небольшой посторонний шум может вызвать сильный раздражающий эффект.

Известно, что ряд таких серьезных заболеваний, как гипертоническая и язвенная болезни, неврозы, в ряде случаев желудочно-кишечные и кожные заболевания, связаны с перенапряжением нервной системы в процессе труда и отдыха. Отсутствие необходимой тишины, особенно в ночное время, приводит к преждевременной усталости, а часто и к заболеваниям.

В этой связи необходимо отметить, что шум в 30—40 дБА в ночное время может явиться серьезным беспокоящим фактором. С увеличением уровней до 70 дБА и выше шум может оказывать определенное физиологическое воздействие на человека, приводя к видимым изменениям в его организме.

Под воздействием шума, превышающего 85—90 дБА, в первую очередь снижается слуховая чувствительность на высоких частотах.

Сильный шум вредно отражается на здоровье и работоспособности людей. Человек, работая при шуме, привыкает к нему, но продолжительное действие сильного шума вызывает общее утомление, может привести к ухудшению слуха, а иногда и к глухоте, нарушается процесс пищеварения, происходят изменения объема внутренних органов.

Воздействуя на кору головного мозга, шум оказывает раздражающее действие, ускоряет процесс утомления, ослабляет внимание и замедляет психические реакции. По этим причинам сильный шум в условиях производства может способствовать возникновению травматизма, так как на фоне этого шума не слышно сигналов — транспорта, автопогрузчиков и других машин.

Эти вредные последствия шума выражены тем больше, чем сильнее шум и чем продолжительнее его действие.

Таким образом, шум вызывает нежелательную реакцию всего организма человека. Патологические изменения, возникшие под влиянием шума, рассматривают как шумовую болезнь.

Звуковые колебания могут восприниматься не только ухом, но и непосредственно через кости черепа (так называемая костная проводимость). Уровень шума, передаваемого этим путем, на 20—30 дБ меньше уровня, воспринимаемого ухом. Если при невысоких уровнях передача за счет костной проводимости мала, то при высоких уровнях она значительно возрастает и усугубляет вредное действие на человека.

При действии шума очень высоких уровней (более 145 дБ) возможен разрыв барабанной перепонки.

Классификация методов защиты от шума.

Средства защиты от шума подразделяют на средства коллективной и индивидуальной защиты.

Меры относительно снижения шума следует предусматривать на стадии проектирования промышленных объектов и оборудования. Особое внимание следует обращать на вынос шумного оборудования в отдельное помещение, что позволяет уменьшить число работников в условиях повышенного уровня шума и осуществить меры относительно снижения шума с минимальными расходами средств, оборудования и материалов. Снижение шума можно достичь только путем обезшумливания всего оборудования с высоким уровнем шума.

Работу относительно обезшумливания действующего производственного оборудования в помещении начинают с составления шумовых карт и спектров шума, оборудования и производственных помещений, на основании которых выносится решение относительно направления работы.

Борьба с шумом в источнике его возникновения — наиболее действенный способ борьбы с шумом. Создаются малошумные механические передачи, разрабатываются способы снижения шума в подшипниковых узлах вентиляторов.

Архитектурно-планировочный аспект коллективной защиты от шума связан с необходимостью учета требований шумозащиты в проектах планирования и застройки городов и микрорайонов. Предполагается снижение уровня шума путем использования экранов, территориальных разрывов, шумозащитных конструкций, зонирования и районирования источников и объектов защиты, защитных полос озеленения.

Организационно-технические средства защиты от шума связаны с изучением процессов шумообразования промышленных установок и агрегатов, транспортных машин, технологического и инженерного оборудования, а также с разработкой более совершенных малошумных конструкторских решений, норм предельно допустимых уровней шума станков, агрегатов, транспортных средств и т. д.

Акустические средства защиты от шума подразделяются на средства звукоизоляции, звукопоглощения и глушители шума.

Снижение шума звукоизоляцией. Суть этого метода заключается в том, что шумоизлучающий объект или несколько наиболее шумных объектов располагаются отдельно, изолировано от основного, менее шумного помещения звукоизолированной стеной или перегородкой. Звукоизоляция также достигается путем расположения наиболее шумного объекта в отдельной кабине. При этом в изолированном помещении и в кабине уровень шума не уменьшится, но шум будет влиять на меньшее число людей. Звукоизоляция достигается также путем расположения оператора в специальной кабине, откуда он наблюдает и руководит технологическим процессом. Звукоизолирующий эффект обеспечивается также установлением экранов и колпаков. Они защищают рабочее место и человека от непосредственного влияния прямого звука, однако не снижают шум в помещении.

Звукопоглощение достигается за счет перехода колебательной энергии в теплоту вследствие потерь на трение в звукопоглотителе. Звукопоглощающие материалы и конструкции предназначены для поглощения звука как в помещениях с источником, так и в соседних помещениях. Потери на трение наиболее значительны в пористых материалах, которые вследствие этого используются в звукопоглощающих материалах. Звукопоглощение используется при акустической обработке помещений.

Акустическая обработка помещения предусматривает покрытие потолка и верхней части стен звукопоглощающим материалом. Вследствие этого снижается интенсивность отраженных звуковых волн. Дополнительно к потолку могут подвешиваться звукопоглощающие щиты, конусы, кубы, устанавливаться резонаторные экраны, то есть искусственные поглотители.

Искусственные поглотители могут применяться отдельно или в сочетании с облицовкой потолка и стен. Эффективность акустической обработки помещений зависит от звукопоглощающих свойств применяемых материалов и конструкций, особенностей их расположения, объема помещения, его геометрии, мест расположения источников шума. Эффект акустической обработки больше в низких помещениях (где высота потолка не превышает 6 м) вытянутой формы. Акустическая обработка позволяет снизить шум на 8 дБА.

Глушители шума применяются в основном для снижения шума различных аэродинамических установок и устройств.

В практике борьбы с шумом используют глушители различных конструкций, выбор которых зависит от конкретных условий каждой установки, спектра шума и требуемой степени снижения шума.

Глушители разделяются на абсорбционные, реактивные и комбинированные. Абсорбционные глушители, содержащие звукопоглощающий материал, поглощают поступившую в них звуковую энергию, а реактивные отражают ее обратно к источнику. В комбинированных глушителях происходит как поглощение, так и отражение звука.

Болевой порог — Большая Энциклопедия Нефти и Газа, статья, страница 3

Болевой порог

Cтраница 3

Наибольшую интенсивность звука, которая воспринимается без ощущения боли, но превышение которой приводит к резкому — болезненному ощущению, называют болевым порогом.  [31]

Если воспользоваться этими 12 %, как ступеньками или делениями шкалы силы звука, начиная от порога слышимости, то до наступления болевого порога уместится примерно 120 делений. Не вдаваясь в детали, укажем только, что такая логарифмическая ступенька представляет собой другую единицу, которая используется в технике и носит название децибел. Для практических целей полезно ознакомиться со следующей табличкой, показывающей значение силы звука в децибелах для разных источников относительно нулевого уровня.  [32]

Наибольшая сила звука, которую человек воспринимает еще без ощущения боли, но превышение которой уже приводит к резкому болезненному ощущению, называют болевым порогом. Между этими порогами лежит областьслышимости.  [33]

Высокие уровни шума ( 60 дБ) вызывают жалобы, при 90 дБ органы слуха начинают деградировать, 110 — 120 дБ считаются болевым порогом, а уровень шума свыше 130 дБ — разрушительный для органа слуха предел. При силе шума в 180 дБ в металле замечены трещины.  [34]

Рассмотрим несколько примеров на нахождение оптимальных частотных характеристик линии связи при различных уровнях шума на приемном конце, когда задан спектр шума и уровень интенсивности меняется вплоть до болевого порога.  [35]

Для каждого звука в границах частот звуковых колебаний, ощущаемых нашим органом слуха ( от 15 — 20 до 21000 гц, имеются предельные значения звуковой энергии: минимальное — на пороге слышимости звука и максимальное — болевой порог, при котором дальнейшее увеличение энергии звука ощущается не как усиление его, а как болезненное давление в ушах.  [36]

Если принять нижний предел слышимости ( давление около 0 0003 дин / см2, что равно ЗхЮ 5 Па) для синусоидальной волны частотой в 1 кГц за 0 дБ, то громкости обычного разговора будет соответствовать 50 дБ, а болевой порог наступит при силе звука около 120 дБ, что соответствует отношению амплитуд, равному одному миллиону. Чтобы избежать путаницы, А и В в формуле являются амплитудами.  [37]

Если принять нижний предел слышимости ( давление около 0 0003 дин / см2, что равно Зх10 — 5 Па) для синусоидальной волны частотой в 1 кГц за 0 дБ, то громкости обычного разговора будет соответствовать 50 дБ, а болевой порог наступит при силе звука около 120 дБ, что соответствует отношению амплитуд, равному одному миллиону. Чтобы избежать путаницы, А к В в формуле являются амплитудами.  [38]

Ба ( отдельными исследованиями зафиксированы шумы до 116 дБа), взлетающий реактивный самолет ( на расстоянии менее 30 м) — 150 дБа При длительном воздействии шума свыше 90 дБа может иметь место расстройство слуха Уровень шума 120 дБа представляет собой т н болевой порог за пределом которого человек испытывает не просто неприятные ощущения, а физическую боль, и у него возможны акустические травмы При уровне шума свыше 140 дБа возможен разрыв барабанной перепонки Если шум превышает 180 дБа, то может наступить смерть Наличие постоянного источника шума является причиной разл нервно-психических расстройств, снижения производительности труда, падения цен на землю ( в первую очередь вблизи аэропортов, железных дорог, дорог автомобильных, разл пром объектов) Мероприятия по борьбе с Ш з включают разработку малошумных двигателей и рациональную орг-цию движения транспорта, эксплуатационные процедуры, служащие для уменьшения шума ( NAP), выбор маршрутов с миним уровнем шума ( MNR), архитектурно-планировочные решения, обеспечивающие экранирование жилых массивов, и др Серьезное внимание проблеме Ш з уделяется с конца 1950 — х гг ( в эти годы началось широкомасштабное применение на коммерческих авиалиниях реактивных пассажирских самолетов) В 1959 г создана междунар ассоциация по борьбе с шумом ( International Association against Noise) со штаб-квартирой в Люцерне ( Швейцария) Задачами этой ассоциации, членами которой являются нац орг-ции 16 стран, являются содействие обмену опытом с Ш з и подготовка проектов стандартов по борьбе с Ш з Начиная с 1962 г Ассоциация регулярно ( один раз в два года) проводит междунар конгрессы по борьбе с шумом В 1969 г проведена междунар конференция по проблеме шума в окрестностях аэропортов В 1971 г ИКАО разработала междунар стандарт, устанавливающий требования по шуму на местности для дозвуковых реактивных пассажирских самолетов В 1972 г в системе ЭПА в США создано Управление проблем снижения шума.  [39]

Вт / м2, что соответствует звуковому давлению ро — 2 — Ю-5 Па. Верхний болевой порог слышимости принят по интенсивности / о 10 Вт / м2, что соответствует звуковому давлению рб 2 — 102 Па. На практике шум оценивают по его уровню относительно минимальных пороговых значений, выраженных в логарифмической форме.  [40]

Особенности восприятия человека. Слух | FernFlower Group

Звук – это колебания, т.е. периодическое механическое возмущение в упругих средах – газообразных, жидких и твердых. Такое возмущение, представляющее собой некоторое физическое изменение в среде (например, изменение плотности или давления, смещение частиц), распространяется в ней в виде звуковой волны. Звук может быть неслышимым, если его частота лежит за пределами чувствительности человеческого уха, или он распространяется в такой среде, как твердое тело, которая не может иметь прямого контакта с ухом, или же его энергия быстро рассеивается в среде. Таким образом, обычный для нас процесс восприятия звука – лишь одна сторона акустики.

 

Звуковая волна [10]

Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение — звуковым давлением. [4]

Рассмотрим длинную трубу, наполненную воздухом. С левого конца в нее вставлен плотно прилегающий к стенкам поршень. Если поршень резко двинуть вправо и остановить, то воздух, находящийся в непосредственной близости от него, на мгновение сожмется. Затем сжатый воздух расширится, толкнув воздух, прилегающий к нему справа, и область сжатия, первоначально возникшая вблизи поршня, будет перемещаться по трубе с постоянной скоростью. Эта волна сжатия и есть звуковая волна в газе. 
То есть резкое смещение частиц упругой среды в одном месте, увеличит давление в этом месте. Благодаря упругим связям частиц, давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разряжения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.

Звуковая волна в газе характеризуется избыточным давлением, избыточной плотностью, смещением частиц и их скоростью. Для звуковых волн эти отклонения от равновесных значений всегда малы. Так, избыточное давление, связанное с волной, намного меньше статического давления газа. В противном случае мы имеем дело с другим явлением – ударной волной. В звуковой волне, соответствующей обычной речи, избыточное давление составляет лишь около одной миллионной атмосферного давления.

Важно то обстоятельство, что вещество не уносится звуковой волной. Волна представляет собой лишь проходящее по воздуху временное возмущение, по прохождении которого воздух возвращается в равновесное состояние.
Волновое движение, конечно, не является характерным только для звука: в форме волн распространяются свет и радиосигналы, и каждому знакомы волны на поверхности воды. [4]

Таким образом, звук, в широком смысле — упругие волны, распространяющиеся в какой-либо упругой среде и создающие в ней механические колебания; в узком смысле — субъективное восприятие этих колебаний специальными органами чувств животных или человека.
Как и любая волна, звук характеризуется амплитудой и спектром частот. Обычно человек слышит звуки, передаваемые по воздуху, в диапазоне частот от 16—20 Гц до 15—20 кГц. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, — ультразвуком, от 1 ГГц — гиперзвуком. Среди слышимых звуков следует также особо выделить фонетические, речевые звуки и фонемы (из которых состоит устная речь) и музыкальные звуки (из которых состоит музыка).

 

[5]

Различают продольные и поперечные звуковые волны в зависимости от соотношения направления распространения волны и направления механических колебаний частиц среды распространения.
В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн. [3]

Воздух не везде однороден для звука. Известно, что воздух постоянно находится в движении. Скорость его движения в различных слоях не одинакова. В слоях, близких к земле, воздух соприкасается с её поверхностью, зданиями, лесами и поэтому скорость его здесь меньше, чем вверху. Благодаря этому и звуковая волна идёт не одинаково быстро вверху и внизу. Если движение воздуха, т. е. ветер — попутчик звуку, то в верхних слоях воздуха ветер будет сильнее подгонять звуковую волну, чем в нижних. При встречном ветре звук вверху распространяется медленнее, чем внизу. Такое различие в скоростях сказывается на форме звуковой волны. В результате искажения волны звук распространяется не прямолинейно. При попутном ветре линия распространения звуковой волны изгибается вниз, при встречном — вверх.

Ещё одна причина неравномерного распространения звука в воздухе. Это — различная температура отдельных его слоёв. 

Неодинаково нагретые слои воздуха, подобно ветру, изменяют направление звука. Днём звуковая волна изгибается вверх, потому что скорость звука в нижних более нагретых слоях больше, чем в верхних слоях. Вечером, когда земля, а с ней и близлежащие слои воздуха, быстро остывают, верхние слои становятся теплее нижних, скорость звука в них больше, и линия распространения звуковых волн изгибается вниз. Поэтому по вечерам на ровном месте бывает лучше слышно.

Наблюдая за облаками, часто можно заметить, как на разных высотах они движутся не только с различной скоростью, но иногда и в разных направлениях. Значит, ветер на различной высоте от земли может иметь неодинаковые скорость и направление. Форма звуковой волны в таких слоях будет также изменяться от слоя к слою. Пусть, например, звук идёт против ветра. В этом случае линия распространения звука должна изогнуться и направиться вверх. Но если на её пути встретится слой медленно движущегося воздуха, она вновь изменит своё направление и может снова вернуться на землю. Вот тогда-то на пространстве от места, где волна поднимается в высоту, до места, в котором она возвращается на землю, и возникает «зона молчания». [11]

Слух — способность биологических организмов воспринимать звуки органами слуха; специальная функция слухового аппарата, возбуждаемая звуковыми колебаниями окружающей среды, например, воздуха или воды. Одно из биологических пяти чувств, называемое также акустическим восприятием.

Ухо человека воспринимает звуковые волны длиной примерно от 20 м до 1,6 см, что соответствует 16 — 20 000 Гц (колебаний в секунду) при передаче колебаний по воздуху, и до 220 кГц при передаче звука по костям черепа. Эти волны имеют важное биологическое значение, например, зву¬ковые волны в диапазоне 300—4000 Гц соответствуют человеческому голосу. Звуки выше 20 000 Гц имеют малое практическое значение, так как быстро тормозятся; колебания ниже 60 Гц воспринимаются благодаря вибрационному чувству. Диапазон частот, которые способен слышать человек, называется слуховым или звуковым диапазоном; более высокие частоты называются ультразвуком, а более низкие — инфразвуком.
Способность различать звуковые частоты сильно зависит от конкретного человека: его возраста, пола, подверженности слуховым болезням, тренированности и усталости слуха. Отдельные личности способны воспринимать звук до 22 кГц, а возможно — и выше.
Человек может различать несколько звуков одновременно благодаря тому, что в ушной улитке одновременно может быть несколько стоячих волн. [1]

Ухо — сложный вестибулярно-слуховой орган, который выполняет две функции: воспринимает звуковые импульсы и отвечает за положение тела в пространстве и способность удерживать равновесие. Это парный орган, который размещается в височных костях черепа, ограничиваясь снаружи ушными раковинами.

Орган слуха и равновесия представлен тремя отделами: наружным, средним и внутренним ухом, каждый из которых выполняет свои конкретные функции.

 

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Ушная раковина — сложной формы упругий хрящ, покрытый кожей, его нижняя часть, называемая мочкой,- кожная складка, которая состоит из кожи и жировой ткани. 
Ушная раковина у живых организмов работает как приемник звуковых волн, которые затем передаются во внутреннюю часть слухового аппарата. Значение ушной раковины у человека намного меньше, чем у животных, поэтому у человека она практически неподвижна. Но вот многие звери, поводя ушами, способны гораздо точнее, чем человек, определить нахождение источника звука.

Складки человеческой ушной раковины вносят в поступающий в слуховой проход звук небольшие частотные искажения, зависящие от горизонтальной и вертикальной локализации звука. Таким образом мозг получает дополнительную информацию для уточнения местоположения источника звука. Этот эффект иногда используется в акустике, в том числе для создания ощущения объёмного звука при использовании наушников или слуховых аппаратов.
Функция ушной раковины — улавливать звуки; ее продолжением является хрящ наружного слухового прохода, длина которого в среднем составляет 25-30 мм. Хрящевая часть слухового прохода переходит в костную, а весь наружный слуховой проход выстлан кожей, содержащей сальные, а также серные железы, представляющие собой видоизмененные потовые. Этот проход заканчивается слепо: от среднего уха он отделен барабанной перепонкой. Уловленные ушной раковиной звуковые волны ударяются в барабанную перепонку и вызывают ее колебания.

В свою очередь, колебания барабанной перепонки передаются в среднее ухо.

Среднее ухо
Основной частью среднего уха является барабанная полость — небольшое пространство объемом около 1см³, находящееся в височной кости. Здесь находятся три слуховые косточки: молоточек, наковальня и стремечко — они передают звуковые колебания из наружного уха во внутреннее, одновременно усиливая их.

Слуховые косточки — как самые маленькие фрагменты скелета человека, представляют цепочку, передающую колебания. Рукоятка молоточка тесно срослась с барабанной перепонкой, головка молоточка соединена с наковальней, а та, в свою очередь, своим длинным отростком — со стремечком. Основание стремечка закрывает окно преддверия, соединяясь таким образом с внутренним ухом.
Полость среднего уха связана с носоглоткой посредством евстахиевой трубы, через которую выравнивается среднее давление воздуха внутри и снаружи от барабанной перепонки. При изменении внешнего давления иногда «закладывает» уши, что обычно решается тем, что рефлекторно вызывается зевота. Опыт показывает, что ещё более эффективно заложенность ушей решается глотательными движениями или если в этот момент дуть в зажатый нос.

Внутреннее ухо
Из трех отделов органа слуха и равновесия наиболее сложным является внутреннее ухо, которое из-за своей замысловатой формы называется лабиринтом. Костный лабиринт состоит из преддверия, улитки и полукружных каналов, но непосредственное отношение к слуху имеет только улитка, заполненная лимфатическими жидкостями. Внутри улитки находится перепончатый канал, также заполненный жидкостью, на нижней стенке которого расположен рецепторный аппарат слухового анализатора, покрытый волосковыми клетками. Волосковые клетки улавливают колебания жидкости, заполняющей канал. Каждая волосковая клетка настроена на определенную звуковую частоту, причем клетки, настроенные на низкие частоты, располагаются в верхней части улитки, а высокие частоты улавливаются клетками нижней части улитки. Когда волосковые клетки от возраста или по другим причинам гибнут, человек теряет способность воспринимать звуки соответствующих частот.[2] 

Человеческое ухо номинально слышит звуки в диапазоне от 16 до 20 000 Гц. Верхний предел имеет тенденцию снижаться с возрастом. Большинство взрослых людей не могут слышать звук частотой выше 16 кГц. Ухо само по себе не реагирует на частоты ниже 20 Гц, но они могут ощущаться через органы осязания.

Диапазон громкости воспринимаемых звуков огромен. Но барабанная перепонка в ухе чувствительна только к изменению давления. Уровень давления звука принято измерять в децибелах (дБ). Нижний порог слышимости определён как 0 дБ (20 микропаскаль), а определение верхнего предела слышимости относится скорее к порогу дискомфорта и далее — к нарушение слуха, контузия и т. д. Этот предел зависит от того, как долго по времени мы слушаем звук. Ухо способно переносить кратковременное повышение громкости до 120 дБ без последствий, но долговременное восприятие звуков громкостью более 80 дБ может вызвать потерю слуха.

Более тщательные исследования нижней границы слуха показали, что минимальный порог, при котором звук остаётся слышен, зависит от частоты. Этот график получил название абсолютный порог слышимости. В среднем, он имеет участок наибольшей чувствительности в диапазоне от 1 кГц до 5 кГц, хотя с возрастом чувствительность понижается в диапазоне выше 2 кГц.
Существует также способ восприятия звука без участия барабанной перепонки — так называемый микроволновый слуховой эффект, когда модулированное излучение в микроволновом диапазоне (от 1 до 300 ГГц) воздействует на ткани вокруг улитки, заставляя человека воспринимать различные звуки.
Иногда человек может слышать звуки в низкочастотной области, хотя в реальности звуков такой частоты не было. Так происходит из-за того, что колебания базилярной мембраны в ухе не являются линейными и в ней могут возникать колебания с разностной частотой между двумя более высокочастотными. [9]

Один из самых необычных психоневрологических феноменов, при котором не совпадают род раздражителя и тип ощущений, которые человек испытывает. Синестетическое восприятие выражается в том, что помимо обычных качеств могут возникать дополнительные, более простые ощущения или стойкие «элементарные» впечатления — например, цвета, запаха, звуков, вкусов, качеств фактурной поверхности, прозрачности, объемности и формы, расположения в пространстве и других качеств, не получаемых при помощи органов чувств, а существующих только в виде реакций. Такие дополнительные качества могут либо возникать как изолированные чувственные впечатления, либо даже проявляться физически. [7]

Выделяют, например, слуховую синестезию. Это способность некоторых людей «слышать» звуки при наблюдении за движущимися предметами или за вспышками, даже если они не сопровождаются реальными звуковыми явлениями.[1]
Следует учитывать, что синестезия, скорее психоневрологическая особенность человека и не является психическим расстройством. Такое восприятие окружающего мира может почувствовать обычный человек путем употребления некоторых наркотических веществ.

Общей теории синестезии (научно доказанного, универсального представления о ней) пока нет. На денный момент существует множество гипотез и проводится масса исследований в данной области. Уже появились оригинальные классификации и сопоставления, выяснились определенные строгие закономерности. Например, мы ученые уже выяснили, что у синестетов есть особый характер внимания — как бы «досознательный» — к тем явлениям, которые вызывают у них синестезию. У синестетов — немного иная анатомия мозга и кардинально иная его активация на синестетические «стимулы». [7] А исследователи из Оксфордского университета (Великобритания) поставили серию экспериментов в ходе которых выяснили, что причиной синестезии могут быть сверхвозбудимые нейроны. [8] Единственное, что можно сказать точно, что такое восприятие получается на уровне работы мозга, а не на уровне первичного восприятия информации.

Волны давления, проходя через внешнее ухо, барабанную перепонку и косточки среднего уха, достигают заполненного жидкостью внутреннего уха, имеющего форму улитки. Жидкость, колеблясь, ударяется о мембрану, покрытую крохотными волосками, ресничками. Синусоидальные составляющие сложного звука вызывают колебания различных участков мембраны. Колеблющиеся вместе с мембраной реснички возбуждают связанные с ними нервные волокна; в них возникают серии импульсов, в которых «закодированы» частота и амплитуда каждой составляющей сложной волны; эти данные электрохимическим способом передаются мозгу.[5]

Из всего спектра звуков прежде всего выделяют слышимый диапазон: от 20 до 20000 герц, инфразвуки (до 20 герц) и ультразвуки – от 20000 герц и выше. Инфразвуки и ультразвуки человек не слышит, но это не значит, что они не оказывают на него воздействия. Известно, что инфразвуки, особенно ниже 10 герц, способны влиять на психику человека, вызывать депрессивные состояния. Ультразвуки могут вызывать астено-вегетативные синдромы и др.
Слышимую часть диапазона звуков разделяют на низкочастотные звуки – до 500 герц, среднечастотные – 500-10000 герц и высокочастотные – свыше 10000 герц.

Такое подразделение очень важно, так как ухо человека неодинаково чувствительно к разным звукам. Наиболее чувствительно ухо к сравнительно узкому диапазону среднечастотных звуков от 1000 до 5000 герц. К более низко- и высокочастотным звукам чувствительность резко падает. Это приводит к тому, что человек способен услышать в среднечастотном диапазоне звуки с энергией около 0 децибел и не слышать низкочастотные звуки в 20-40-60 децибел. То есть, звуки с одной и той же энергией в среднечастотном диапазоне могут восприниматься как громкие, а в низкочастотном как тихие или быть вовсе не слышны.

Такая особенность звука сформирована природой не случайно. Звуки, необходимые для его существования: речь, звуки природы, – находятся в основном в среднечастотном диапазоне. 
Восприятие звуков значительно нарушается, если одновременно звучат другие звуки, шумы близкие по частоте или составу гармоник. Значит, с одной стороны, ухо человека плохо воспринимает низкочастотные звуки, а, с другой, если в помещении посторонние шумы, то восприятие таких звуков может еще более нарушаться и извращаться. [6]

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *