Релаксация физика: Релаксация (Физика) — это… Что такое Релаксация (Физика)? – Релаксация (физика) — это… Что такое Релаксация (физика)?

Автор: | 30.07.2020

Содержание

Релаксация (Физика) — это… Что такое Релаксация (Физика)?

Релаксация (от лат. relaxatio — ослабление, уменьшение) — процесс установления термодинамического, а следовательно, и статистического равновесия в физической системе, состоящей из большого числа частиц.

Свойства и виды

Релаксация — многоступенчатый процесс, так как не все физические параметры системы (распределение частиц по координатам и импульсам, температура, давление, концентрация в малых объёмах и во всей системе и другие) стремятся к равновесию с одинаковой скоростью. Обычно сначала устанавливается равновесие по какому-либо параметру (частичное равновесие), что также называется релаксацией. Все процессы релаксации являются неравновесными процессами, при которых в системе происходит диссипация энергии, то есть производится энтропия (в замкнутой системе энтропия возрастает). В различных системах релаксация имеет свои особенности, зависящие от характера взаимодействия между частицами системы; поэтому процессы релаксации

весьма многообразны. Время установления равновесия (частичного или полного) в системе называется временем релаксации. Процесс установления равновесия в газах определяется длиной свободного пробега частиц \,l и временем свободного пробега \,t (среднее расстояние и среднее время между двумя последовательными столкновениями молекул). Отношение \,l/t имеет порядок величины скорости частиц. Величины \,l
и \,t очень малы по сравнению с макроскопическими масштабами длины и времени. С другой стороны, для газов время свободного пробега значительно больше времени столкновения \,t_0 (t >> t_0). Только при этом условии релаксация определяется лишь парными столкновениями молекул.

Описание процесса релаксации

Для одноатомных газов

В одноатомных газах (без внутренних степеней свободы, то есть обладающих только поступательными степенями свободы)

релаксация происходит в два этапа.

На первом этапе за короткий промежуток времени, порядка времени столкновения молекул то, начальное, даже сильно неравновесное, состояние хаотизируется таким образом, что становятся несущественными детали начального состояния и оказывается возможным так называемое «сокращённое описание» неравновесного состояния системы, когда не требуется знания вероятности распределения всех частиц системы по координатам и импульсам, а достаточно знать распределение одной частицы по координатам и импульсам в зависимости от времени, то есть одночастичную функцию распределения молекул. (Все остальные функции распределения более высокого порядка, описывающие распределения по состояниям двух, трёх и т. д. частиц, зависят от времени лишь через одночастичную функцию). Одночастичная функция удовлетворяет кинетическому уравнению Больцмана, которое описывает процесс

релаксации. Этот этап называется кинетическим и является очень быстрым процессом релаксации.

На втором этапе за время порядка времени свободного пробега молекул и в результате всего нескольких столкновений в макроскопически малых объёмах системы устанавливается локальное равновесие; ему соответствует локально-равновесное, или квазиравновесное, распределение, которое характеризуется такими же параметрами, как и при полном равновесии системы, но зависящими от пространственных координат и времени. Эти малые объёмы содержат ещё очень много молекул, а поскольку они взаимодействуют с окружением лишь на своей поверхности, их можно считать приближённо изолированными. Параметры локально-равновесного распределения в процессе

релаксации медленно стремятся к равновесным, а состояние системы обычно мало отличается от равновесного. Время релаксации для локального равновесия \,t_p >> t_0. После установления локального равновесия для описания релаксации неравновесного состояния системы служат уравнения гидродинамики (уравнения Навье — Стокса, уравнения теплопроводности, диффузии и т. п.). При этом предполагается, что термодинамические параметры системы (плотность, температура и т. д.) и массовая скорость (средняя скорость переноса массы) мало меняются за время \,t
и на расстоянии \,l. Этот этап релаксации называется гидродинамическим. Дальнейшая релаксация системы к состоянию полного статистического равновесия, при котором выравниваются средние скорости частиц, средняя температура, средняя концентрация и т. д., происходит медленно в результате очень большого числа столкновений.

Такие процессы (вязкость, теплопроводность, диффузия, электропроводность и т. п.) называются медленными. Соответствующее время релаксации \,t_p зависит от размеров \,L системы и велико по сравнению с \,t: \,t0 \approx  t(L/l)2 >> t

, что имеет место при \,l << L, то есть для не сильно разреженных газов.

Для многоатомных газов

В многоатомных газах (с внутренними степенями свободы) может быть замедлен обмен энергией между поступательными и внутренними степенями свободы, и возникает процесс релаксации, связанный с этим явлением. Быстрее всего — за время порядка времени между столкновениями — устанавливается равновесие по поступательным степеням свободы; такое равновесное состояние можно охарактеризовать соответствующей температурой. Равновесие между поступательными и вращательными степенями свободы устанавливается значительно медленнее. Возбуждение колебательных степеней свободы может происходить лишь при высоких температурах. Поэтому в многоатомных газах возможны многоступенчатые процессы

релаксации энергии колебательных и вращательных степеней свободы.

Для смесей газов

В смесях газов с сильно различающимися массами молекул замедлен обмен энергией между компонентами, вследствие чего возможно возникновение состояния с различными температурами компонент и процессы релаксации их температур. Например, в плазме сильно различаются массы ионов и электронов. Быстрее всего устанавливается равновесие электронной компоненты, затем приходит в равновесие ионная компонента, и значительно большее время требуется для установления равновесия между электронами и ионами; поэтому в плазме могут длительное время существовать состояния, в которых ионные и электронные температуры различны а, следовательно, происходят процессы

релаксации температур компонент.

Для жидкостей

В жидкостях теряет смысл понятие времени и длины свободного пробега частиц (а следовательно, и кинетического уравнения для одночастичной функции распределения). Аналогичную роль для жидкости играют величины \,t_1 и \,l_1

— время и длина корреляции динамических переменных, описывающих потоки энергии или импульса; t1 и l1 характеризуют затухание во времени и в пространстве взаимного влияния молекул, то есть корреляции. При этом полностью остаётся в силе понятие гидродинамического этапа релаксации и локально-равновесного состояния. В макроскопически малых объёмах жидкости, но ещё достаточно больших по сравнению с длиной корреляции \,l_1, локально-равновесное распределение устанавливается за время порядка времени корреляции \,t_1(t_p >> t_1)
в результате интенсивного взаимодействия между молекулами (а не парных столкновений, как в газе), но эти объёмы по-прежнему можно считать приближённо изолированными. На гидродинамическом этапе релаксация в жидкости термодинамические параметры и массовая скорость удовлетворяют таким же уравнениям гидродинамики, как и для газов (при условии малости изменения термодинамических параметров и массовой скорости за время \,t_1
и на расстоянии \,l_1). Время релаксации к полному термодинамическому равновесию \,t_p >> t_1(L/l_1)^2 (так же, как в газе и твёрдом теле) можно оценить с помощью кинетических коэффициентов. Например, время релаксации концентрации в бинарной смеси в объёме \,L^3 порядка \,t_p >> L^2/D, где \,D — коэффициент диффузии, время релаксации температуры \,tp >> L^2/c, где \,c — коэффициент температуропроводности, и т. д. Для жидкости с внутренними степенями свободы молекул возможно сочетание гидродинамического описания поступательных степеней свободы с дополнительными уравнениями для описания релаксации внутренних степеней свободы (релаксационная гидродинамика).

Для твёрдых тел и квантовых жидкостей

В твёрдых телах, как и в квантовых жидкостях, релаксацию можно описывать как релаксацию в газе квазичастиц. В этом случае можно ввести время и длину свободного пробега соответствующих квазичастиц (при условии малости возбуждения системы). Например, в кристаллической решётке при низких температурах упругие колебания можно трактовать как газ фононов. Взаимодействие между фононами приводит к квантовым переходам, то есть к столкновениям между ними. Релаксация энергии в кристаллической решётке описывается кинетическим уравнением для фононов. В системе спиновых магнитных моментов ферромагнетика квазичастицами являются магноны; Релаксацию (например, намагниченности) можно описывать кинетическим уравнением для магнонов. Релаксация магнитного момента в ферромагнетике происходит в два этапа: на первом этапе за счёт относительно сильного обменного взаимодействия устанавливается равновесное значение абсолютной величины магнитного момента.

На втором этапе за счёт слабого спин-орбитального взаимодействия магнитный момент медленно ориентируется вдоль оси лёгкого намагничивания; этот этап аналогичен гидродинамическому этапу релаксации в газах.

См. также

Литература

Лит.: Уленбек Д., форд Дж., Лекции по статистической механике, пер. с англ., М., 1965.

Ссылки

Wikimedia Foundation. 2010.

Релаксация (физика) — это… Что такое Релаксация (физика)?

Релаксация (от лат. relaxatio — ослабление, уменьшение) — процесс установления термодинамического, а следовательно, и статистического равновесия в физической системе, состоящей из большого числа частиц.

Свойства и виды

Релаксация — многоступенчатый процесс, так как не все физические параметры системы (распределение частиц по координатам и импульсам, температура, давление, концентрация в малых объёмах и во всей системе и другие) стремятся к равновесию с одинаковой скоростью. Обычно сначала устанавливается равновесие по какому-либо параметру (частичное равновесие), что также называется релаксацией. Все процессы релаксации являются неравновесными процессами, при которых в системе происходит диссипация энергии, то есть производится энтропия (в замкнутой системе энтропия возрастает). В различных системах релаксация имеет свои особенности, зависящие от характера взаимодействия между частицами системы; поэтому процессы релаксации весьма многообразны. Время установления равновесия (частичного или полного) в системе называется временем релаксации.

Процесс установления равновесия в газах определяется длиной свободного пробега частиц и временем свободного пробега (среднее расстояние и среднее время между двумя последовательными столкновениями молекул). Отношение имеет порядок величины скорости частиц. Величины и очень малы по сравнению с макроскопическими масштабами длины и времени. С другой стороны, для газов время свободного пробега значительно больше времени столкновения . Только при этом условии релаксация определяется лишь парными столкновениями молекул.

Описание процесса релаксации

Для одноатомных газов

В одноатомных газах (без внутренних степеней свободы, то есть обладающих только поступательными степенями свободы) релаксация происходит в два этапа.

На первом этапе за короткий промежуток времени, порядка времени столкновения молекул то, начальное, даже сильно неравновесное, состояние хаотизируется таким образом, что становятся несущественными детали начального состояния и оказывается возможным так называемое «сокращённое описание» неравновесного состояния системы, когда не требуется знания вероятности распределения всех частиц системы по координатам и импульсам, а достаточно знать распределение одной частицы по координатам и импульсам в зависимости от времени, то есть одночастичную функцию распределения молекул. (Все остальные функции распределения более высокого порядка, описывающие распределения по состояниям двух, трёх и т. д. частиц, зависят от времени лишь через одночастичную функцию).

Одночастичная функция удовлетворяет кинетическому уравнению Больцмана, которое описывает процесс релаксации. Этот этап называется кинетическим и является очень быстрым процессом релаксации.

На втором этапе за время порядка времени свободного пробега молекул и в результате всего нескольких столкновений в макроскопически малых объёмах системы устанавливается локальное равновесие; ему соответствует локально-равновесное, или квазиравновесное, распределение, которое характеризуется такими же параметрами, как и при полном равновесии системы, но зависящими от пространственных координат и времени. Эти малые объёмы содержат ещё очень много молекул, а поскольку они взаимодействуют с окружением лишь на своей поверхности, их можно считать приближённо изолированными. Параметры локально-равновесного распределения в процессе релаксации медленно стремятся к равновесным, а состояние системы обычно мало отличается от равновесного. Время релаксации для локального равновесия . После установления локального равновесия для описания релаксации неравновесного состояния системы служат уравнения гидродинамики (уравнения Навье — Стокса, уравнения теплопроводности, диффузии и т. п.). При этом предполагается, что термодинамические параметры системы (плотность, температура и т. д.) и массовая скорость (средняя скорость переноса массы) мало меняются за время и на расстоянии . Этот этап релаксации называется гидродинамическим. Дальнейшая релаксация системы к состоянию полного статистического равновесия, при котором выравниваются средние скорости частиц, средняя температура, средняя концентрация и т. д., происходит медленно в результате очень большого числа столкновений.

Такие процессы (вязкость, теплопроводность, диффузия, электропроводность и т. п.) называются медленными. Соответствующее время релаксации зависит от размеров системы и велико по сравнению с : , что имеет место при , то есть для не сильно разреженных газов.

Для многоатомных газов

В многоатомных газах (с внутренними степенями свободы) может быть замедлен обмен энергией между поступательными и внутренними степенями свободы, и возникает процесс релаксации, связанный с этим явлением. Быстрее всего — за время порядка времени между столкновениями — устанавливается равновесие по поступательным степеням свободы; такое равновесное состояние можно охарактеризовать соответствующей температурой. Равновесие между поступательными и вращательными степенями свободы устанавливается значительно медленнее. Возбуждение колебательных степеней свободы может происходить лишь при высоких температурах. Поэтому в многоатомных газах возможны многоступенчатые процессы релаксации энергии колебательных и вращательных степеней свободы.

Для смесей газов

В смесях газов с сильно различающимися массами молекул замедлен обмен энергией между компонентами, вследствие чего возможно возникновение состояния с различными температурами компонент и процессы релаксации их температур. Например, в плазме сильно различаются массы ионов и электронов. Быстрее всего устанавливается равновесие электронной компоненты, затем приходит в равновесие ионная компонента, и значительно большее время требуется для установления равновесия между электронами и ионами; поэтому в плазме могут длительное время существовать состояния, в которых ионные и электронные температуры различны а, следовательно, происходят процессы релаксации температур компонент.

Для жидкостей

В жидкостях теряет смысл понятие времени и длины свободного пробега частиц (а следовательно, и кинетического уравнения для одночастичной функции распределения). Аналогичную роль для жидкости играют величины и  — время и длина корреляции динамических переменных, описывающих потоки энергии или импульса; и характеризуют затухание во времени и в пространстве взаимного влияния молекул, то есть корреляции. При этом полностью остаётся в силе понятие гидродинамического этапа релаксации и локально-равновесного состояния. В макроскопически малых объёмах жидкости, но ещё достаточно больших по сравнению с длиной корреляции , локально-равновесное распределение устанавливается за время порядка времени корреляции в результате интенсивного взаимодействия между молекулами (а не парных столкновений, как в газе), но эти объёмы по-прежнему можно считать приближённо изолированными. На гидродинамическом этапе релаксация в жидкости термодинамические параметры и массовая скорость удовлетворяют таким же уравнениям гидродинамики, как и для газов (при условии малости изменения термодинамических параметров и массовой скорости за время и на расстоянии ). Время релаксации к полному термодинамическому равновесию (так же, как в газе и твёрдом теле) можно оценить с помощью кинетических коэффициентов. Например, время релаксации концентрации в бинарной смеси в объёме порядка , где  — коэффициент диффузии, время релаксации температуры , где  — коэффициент температуропроводности, и т. д. Для жидкости с внутренними степенями свободы молекул возможно сочетание гидродинамического описания поступательных степеней свободы с дополнительными уравнениями для описания релаксации внутренних степеней свободы (релаксационная гидродинамика).

Для твёрдых тел и квантовых жидкостей

В твёрдых телах, как и в квантовых жидкостях, релаксацию можно описывать как релаксацию в газе квазичастиц. В этом случае можно ввести время и длину свободного пробега соответствующих квазичастиц (при условии малости возбуждения системы).

Например, в кристаллической решётке при низких температурах упругие колебания можно трактовать как газ фононов. Взаимодействие между фононами приводит к квантовым переходам, то есть к столкновениям между ними. Релаксация энергии в кристаллической решётке описывается кинетическим уравнением для фононов. В системе спиновых магнитных моментов ферромагнетика квазичастицами являются магноны. Релаксацию (например, намагниченности) можно описывать кинетическим уравнением для магнонов. Релаксация магнитного момента в ферромагнетике происходит в два этапа: на первом этапе за счёт относительно сильного обменного взаимодействия устанавливается равновесное значение абсолютной величины магнитного момента.

На втором этапе за счёт слабого спин-орбитального взаимодействия магнитный момент медленно ориентируется вдоль оси лёгкого намагничивания; этот этап аналогичен гидродинамическому этапу релаксации в газах.

Литература

  • Уленбек Д., Форд Дж. Лекции по статистической механике. — Пер. с англ. — М.: Мир, 1965.
  • Бондаревский С. И., Аблесимов Н. Е. Релаксационные эффекты в неравновесных конденсированных системах. Самооблучение в результате радиоактивного распада. — Владивосток: Дальнаука, 2002. — 232 с.
  • Аблесимов Н. Е., Земцов А. Н. Релаксационные эффекты в неравновесных конденсированных системах. Базальты: от извержения до волокна. — М.: ИТиГ ДВО РАН, 2010. — 400 с.
  • Осипов А. И. Термодинамика вчера, сегодня, завтра. Часть 1. Равновесная термодинамика // СОЖ. — 1999. — № 4. — с. 79-85.

См. также

РЕЛАКСАЦИЯ • Большая российская энциклопедия

РЕЛАКСА́ЦИЯ в фи­зи­ке, про­цесс ус­та­нов­ле­ния тер­мо­ди­на­мич. рав­но­ве­сия в фи­зич. сис­те­ме, со­стоя­щей из боль­шо­го чис­ла час­тиц. Р. – мно­го­сту­пен­ча­тый про­цесс, т. к. не все фи­зич. па­ра­мет­ры сис­те­мы стре­мят­ся к рав­но­ве­сию с оди­на­ко­вой ско­ро­стью. Обыч­но сна­ча­ла ус­та­нав­ли­ва­ет­ся рав­но­ве­сие по к.-л. па­ра­мет­ру (час­тич­ное рав­но­ве­сие). Все про­цес­сы Р. яв­ля­ют­ся не­рав­но­вес­ны­ми и не­об­ра­ти­мы­ми про­цес­са­ми, при ко­то­рых в сис­те­ме про­ис­хо­дит дис­си­па­ция энер­гии. Ис­сле­до­ва­ние этих про­цес­сов со­став­ля­ет пред­мет ки­не­ти­ки фи­зи­че­ской.

Вре­мя τ ус­та­нов­ле­ния час­тич­но­го или пол­но­го рав­но­ве­сия в сис­те­ме на­зы­ва­ет­ся вре­ме­нем ре­лак­са­ции. Ко­гда от­кло­не­ние от рав­но­ве­сия не­ве­ли­ко, Р. па­ра­мет­ра $x$ со вре­ме­нем $t$ обыч­но про­ис­хо­дит по за­ко­ну $x=x_0\exp(–t/τ)$, где $x_0$ – на­чаль­ное зна­че­ние па­ра­мет­ра $x$.

В га­зах Р. обу­слов­ле­на об­ме­ном энер­ги­ей и им­пуль­сом при пар­ных столк­но­ве­ни­ях час­тиц, а вре­мя Р. оп­ре­де­ля­ет­ся вре­ме­нем сво­бод­но­го про­бе­га час­тиц и эф­фек­тив­но­стью об­ме­на энер­ги­ей ме­ж­ду все­ми сте­пе­ня­ми сво­бо­ды стал­ки­ваю­щих­ся час­тиц. В од­но­атом­ных га­зах вы­де­ля­ют этап бы­ст­рой Р. (т. н. ки­не­тич. ста­дия), ко­гда за ко­рот­кий пе­ри­од вре­ме­ни, по­ряд­ка вре­ме­ни столк­но­ве­ния час­тиц, на­чаль­ное (силь­но не­рав­но­вес­ное) со­стоя­ние хао­ти­зи­ру­ет­ся на­столь­ко, что для его опи­са­ния дос­та­точ­но знать, как из­ме­ня­ет­ся во вре­ме­ни рас­пре­де­ле­ние по ко­ор­ди­на­там и им­пуль­сам все­го од­ной час­ти­цы (т. н. од­но­час­тич­ная функ­ция рас­пре­де­ле­ния). На вто­ром эта­пе Р. (т. н. гид­ро­ди­на­мич. ста­дия) за вре­мя по­ряд­ка вре­ме­ни сво­бод­но­го про­бе­га в ре­зуль­та­те все­го не­сколь­ких столк­но­ве­ний в мак­ро­ско­пи­че­ски ма­лых объ­ё­мах ус­та­нав­ли­ва­ет­ся ло­каль­ное тер­мо­ди­на­мич. рав­но­ве­сие. Оно ха­рак­те­ри­зу­ет­ся па­ра­мет­ра­ми со­стоя­ния (темп-рой, хи­мич. по­тен­циа­лом и др.), ко­то­рые за­ви­сят от про­стран­ст­вен­ных ко­ор­ди­нат и вре­ме­ни и мед­лен­но стре­мят­ся к рав­но­вес­ным зна­че­ни­ям в ре­зуль­та­те боль­шо­го чис­ла столк­но­ве­ний (про­цес­сы те­п­ло­про­вод­но­сти, диф­фу­зии, вяз­ко­сти и др.). Вре­мя Р. за­ви­сит от раз­ме­ра сис­те­мы и ве­ли­ко по срав­не­нию со ср. вре­ме­нем сво­бод­но­го про­бе­га.

В мно­го­атом­ных га­зах мо­жет быть за­мед­лен об­мен энер­ги­ей ме­ж­ду по­сту­пат. и внутр. сте­пе­ня­ми сво­бо­ды час­тиц. Бы­ст­рее все­го (за вре­мя по­ряд­ка вре­ме­ни ме­ж­ду столк­но­ве­ния­ми) ус­та­нав­ли­ва­ет­ся рав­но­ве­сие по по­сту­пат. сте­пе­ням сво­бо­ды. Рав­но­ве­сие ме­ж­ду по­сту­пат. и вра­щат. сте­пе­ня­ми сво­бо­ды ус­та­нав­ли­ва­ет­ся зна­чи­тель­но мед­лен­нее.

В сме­сях га­зов с силь­но раз­ли­чаю­щими­ся мас­са­ми час­тиц за­мед­лен об­мен энер­ги­ей ме­ж­ду ком­по­нен­та­ми, вслед­ст­вие че­го воз­мож­ны по­яв­ле­ние со­стоя­ния с разл. темп-ра­ми ком­по­нент и про­цес­сы Р. их темп-р. Напр., в плаз­ме быст­рее все­го ус­та­нав­ли­ва­ет­ся рав­но­ве­сие элек­трон­ной ком­по­нен­ты, за­тем при­хо­дит в рав­но­ве­сие ион­ная ком­по­нен­та, и зна­чи­тель­но боль­шее вре­мя тре­бу­ет­ся для ус­та­нов­ле­ния рав­но­ве­сия ме­ж­ду элек­тро­на­ми и ио­на­ми.

В жид­ко­сти Р. опи­сы­ва­ют с по­мо­щью про­стран­ст­вен­но-вре­менны́х кор­ре­ля­ци­он­ных функ­ций, ха­рак­те­ри­зую­щих за­ту­ха­ние во вре­ме­ни и про­стран­ст­ве вза­им­но­го влия­ния мо­ле­кул (кор­ре­ля­ций). Эти кор­ре­ля­ции яв­ля­ют­ся при­чи­ной не­об­ра­ти­мых про­цес­сов – те­п­ло­про­вод­но­сти и вяз­ко­сти.

В твёр­дых те­лах Р. опи­сы­ва­ют как Р. в га­зе ква­зи­ча­стиц. Напр., в кри­стал­лич. ре­шёт­ке при низ­ких темп-pax уп­ру­гие ко­ле­ба­ния трак­ту­ют как газ фо­но­нов. Р. внутр. энер­гии в кри­стал­лич. ре­шёт­ке опи­сы­ва­ет­ся ки­не­тич. урав­не­ни­ем для фо­но­нов. В сис­те­ме спи­но­вых маг­нит­ных мо­мен­тов фер­ро­маг­не­ти­ка ква­зи­ча­сти­ца­ми яв­ля­ют­ся маг­но­ны (см. Ре­лак­са­ция маг­нит­ная). Р., обу­слов­лен­ная рас­про­стра­не­ни­ем зву­ко­вых волн в ве­ще­ст­ве, с ко­то­рой свя­за­но по­гло­ще­ние зву­ка, на­зы­ва­ет­ся ре­лак­са­ци­ей аку­сти­че­ской.

Лит. см. при ст. Ки­не­ти­ка фи­зи­че­ская.

Релаксация (физика) — Википедия. Что такое Релаксация (физика)

Релаксация (от лат. relaxatio — ослабление, уменьшение) — процесс установления термодинамического, а следовательно, и статистического равновесия в физической системе, состоящей из большого числа частиц.

Релаксация — многоступенчатый процесс, так как не все физические параметры системы (распределение частиц по координатам и импульсам, температура, давление, концентрация в малых объёмах и во всей системе и другие) стремятся к равновесию с одинаковой скоростью. Обычно сначала устанавливается равновесие по какому-либо параметру (частичное равновесие), что также называется релаксацией. Все процессы релаксации являются неравновесными процессами, при которых в системе происходит диссипация энергии, то есть производится энтропия (в замкнутой системе энтропия не убывает). В различных системах релаксация имеет свои особенности, зависящие от характера взаимодействия между частицами системы; поэтому процессы релаксации весьма многообразны. Время установления равновесия (частичного или полного) в системе называется временем релаксации.

Процесс установления равновесия в газах определяется длиной свободного пробега частиц l{\displaystyle l} и временем свободного пробега t{\displaystyle t} (среднее расстояние и среднее время между двумя последовательными столкновениями молекул). Отношение l/t{\displaystyle l/t} имеет порядок величины скорости частиц. Величины l{\displaystyle l} и t{\displaystyle t} очень малы по сравнению с макроскопическими масштабами длины и времени. С другой стороны, для газов время свободного пробега значительно больше времени столкновения t0{\displaystyle t_{0}} (t≫t0){\displaystyle (t\gg t_{0})}. Только при этом условии релаксация определяется лишь парными столкновениями молекул.

Описание процесса релаксации

Для одноатомных газов

В одноатомных газах (без внутренних степеней свободы, то есть обладающих только поступательными степенями свободы) релаксация происходит в два этапа.

На первом этапе за короткий промежуток времени, порядка времени столкновения молекул то, начальное, даже сильно неравновесное, состояние хаотизируется таким образом, что становятся несущественными детали начального состояния и оказывается возможным так называемое «сокращённое описание» неравновесного состояния системы, когда не требуется знания вероятности распределения всех частиц системы по координатам и импульсам, а достаточно знать распределение одной частицы по координатам и импульсам в зависимости от времени, то есть одночастичную функцию распределения молекул. (Все остальные функции распределения более высокого порядка, описывающие распределения по состояниям двух, трёх и т. д. частиц, зависят от времени лишь через одночастичную функцию).

Одночастичная функция удовлетворяет кинетическому уравнению Больцмана, которое описывает процесс релаксации. Этот этап называется кинетическим и является очень быстрым процессом релаксации.

На втором этапе за время порядка времени свободного пробега молекул и в результате всего нескольких столкновений в макроскопически малых объёмах системы устанавливается локальное равновесие; ему соответствует локально-равновесное, или квазиравновесное, распределение, которое характеризуется такими же параметрами, как и при полном равновесии системы, но зависящими от пространственных координат и времени. Эти малые объёмы содержат ещё очень много молекул, а поскольку они взаимодействуют с окружением лишь на своей поверхности, их можно считать приближённо изолированными. Параметры локально-равновесного распределения в процессе релаксации медленно стремятся к равновесным, а состояние системы обычно мало отличается от равновесного. Время релаксации для локального равновесия tp≫t0{\displaystyle t_{p}\gg t_{0}}. После установления локального равновесия для описания релаксации неравновесного состояния системы служат уравнения гидродинамики (уравнения Навье — Стокса, уравнения теплопроводности, диффузии и т. п.). При этом предполагается, что термодинамические параметры системы (плотность, температура и т. д.) и массовая скорость (средняя скорость переноса массы) мало меняются за время t{\displaystyle t} и на расстоянии l{\displaystyle l}. Этот этап релаксации называется гидродинамическим. Дальнейшая релаксация системы к состоянию полного статистического равновесия, при котором выравниваются средние скорости частиц, средняя температура, средняя концентрация и т. д., происходит медленно в результате очень большого числа столкновений.

Такие процессы (вязкость, теплопроводность, диффузия, электропроводность и т. п.) называются медленными. Соответствующее время релаксации tp{\displaystyle t_{p}} зависит от размеров L{\displaystyle L} системы и велико по сравнению с t{\displaystyle t}: t0≈t(L/l)2≫t{\displaystyle t_{0}\approx t(L/l)2\gg t}, что имеет место при l≪L{\displaystyle l\ll L}, то есть для не сильно разреженных газов.

Для многоатомных газов

В многоатомных газах (с внутренними степенями свободы) может быть замедлен обмен энергией между поступательными и внутренними степенями свободы, и возникает процесс релаксации, связанный с этим явлением. Быстрее всего — за время порядка времени между столкновениями — устанавливается равновесие по поступательным степеням свободы; такое равновесное состояние можно охарактеризовать соответствующей температурой. Равновесие между поступательными и вращательными степенями свободы устанавливается значительно медленнее. Возбуждение колебательных степеней свободы может происходить лишь при высоких температурах. Поэтому в многоатомных газах возможны многоступенчатые процессы релаксации энергии колебательных и вращательных степеней свободы.

Для смесей газов

В смесях газов с сильно различающимися массами молекул замедлен обмен энергией между компонентами, вследствие чего возможно возникновение состояния с различными температурами компонент и процессы релаксации их температур. Например, в плазме сильно различаются массы ионов и электронов. Быстрее всего устанавливается равновесие электронной компоненты, затем приходит в равновесие ионная компонента, и значительно большее время требуется для установления равновесия между электронами и ионами; поэтому в плазме могут длительное время существовать состояния, в которых ионные и электронные температуры различны а, следовательно, происходят процессы релаксации температур компонент.

Для жидкостей

В жидкостях теряет смысл понятие времени и длины свободного пробега частиц (а следовательно, и кинетического уравнения для одночастичной функции распределения). Аналогичную роль для жидкости играют величины t1{\displaystyle t_{1}} и l1{\displaystyle l_{1}} — время и длина корреляции динамических переменных, описывающих потоки энергии или импульса; t1{\displaystyle t_{1}} и l1{\displaystyle l_{1}} характеризуют затухание во времени и в пространстве взаимного влияния молекул, то есть корреляции. При этом полностью остаётся в силе понятие гидродинамического этапа релаксации и локально-равновесного состояния. В макроскопически малых объёмах жидкости, но ещё достаточно больших по сравнению с длиной корреляции l1{\displaystyle l_{1}}, локально-равновесное распределение устанавливается за время порядка времени корреляции t1{\displaystyle t_{1}} (tp≫t1){\displaystyle (t_{p}\gg t_{1})} в результате интенсивного взаимодействия между молекулами (а не парных столкновений, как в газе), но эти объёмы по-прежнему можно считать приближённо изолированными. На гидродинамическом этапе релаксация в жидкости термодинамические параметры и массовая скорость удовлетворяют таким же уравнениям гидродинамики, как и для газов (при условии малости изменения термодинамических параметров и массовой скорости за время t1{\displaystyle t_{1}} и на расстоянии l1{\displaystyle l_{1}}). Время релаксации к полному термодинамическому равновесию tp≫t1(L/l1)2{\displaystyle t_{p}\gg t_{1}(L/l_{1})^{2}} (так же, как в газе и твёрдом теле) можно оценить с помощью кинетических коэффициентов. Например, время релаксации концентрации в бинарной смеси в объёме L3{\displaystyle L^{3}} порядка tp≫L2/D{\displaystyle t_{p}\gg L^{2}/D}, где D{\displaystyle D} — коэффициент диффузии, время релаксации температуры tp≫L2/c{\displaystyle t_{p}\gg L^{2}/c}, где c{\displaystyle c} — коэффициент температуропроводности, и т. д. Для жидкости с внутренними степенями свободы молекул возможно сочетание гидродинамического описания поступательных степеней свободы с дополнительными уравнениями для описания релаксации внутренних степеней свободы (релаксационная гидродинамика).

Для твёрдых тел и квантовых жидкостей

В твёрдых телах, как и в квантовых жидкостях, релаксацию можно описывать как релаксацию в газе квазичастиц. В этом случае можно ввести время и длину свободного пробега соответствующих квазичастиц (при условии малости возбуждения системы).

Например, в кристаллической решётке при низких температурах упругие колебания можно трактовать как газ фононов. Взаимодействие между фононами приводит к квантовым переходам, то есть к столкновениям между ними. Релаксация энергии в кристаллической решётке описывается кинетическим уравнением для фононов. В системе спиновых магнитных моментов ферромагнетика квазичастицами являются магноны. Релаксацию (например, намагниченности) можно описывать кинетическим уравнением для магнонов. Релаксация магнитного момента в ферромагнетике происходит в два этапа: на первом этапе за счёт относительно сильного обменного взаимодействия устанавливается равновесное значение абсолютной величины магнитного момента.

На втором этапе за счёт слабого спин-орбитального взаимодействия магнитный момент медленно ориентируется вдоль оси лёгкого намагничивания; этот этап аналогичен гидродинамическому этапу релаксации в газах.

Литература

  • Уленбек Д., Форд Дж. Лекции по статистической механике. — Пер. с англ. — М.: Мир, 1965.
  • Бондаревский С. И., Аблесимов Н. Е. Релаксационные эффекты в неравновесных конденсированных системах. Самооблучение в результате радиоактивного распада. — Владивосток: Дальнаука, 2002. — 232 с.
  • Аблесимов Н. Е., Земцов А. Н. Релаксационные эффекты в неравновесных конденсированных системах. Базальты: от извержения до волокна. — М.: ИТиГ ДВО РАН, 2010. — 400 с.
  • Осипов А. И. Термодинамика вчера, сегодня, завтра. Часть 1. Равновесная термодинамика // СОЖ. — 1999. — № 4. — с. 79-85.

См. также

Релаксация (физика) — Википедия

Релакса́ция (от лат. relaxatio «ослабление, уменьшение») — процесс установления термодинамического, а следовательно, и статистического равновесия в физической системе, состоящей из большого числа частиц.

Релаксация — многоступенчатый процесс, так как не все физические параметры системы (распределение частиц по координатам и импульсам, температура, давление, концентрация в малых объёмах и во всей системе и другие) стремятся к равновесию с одинаковой скоростью. Обычно сначала устанавливается равновесие по какому-либо параметру (частичное равновесие), что также называется релаксацией. Все процессы релаксации являются неравновесными процессами, при которых в системе происходит диссипация энергии, то есть производится энтропия (в замкнутой системе энтропия не убывает). В различных системах релаксация имеет свои особенности, зависящие от характера взаимодействия между частицами системы; поэтому процессы релаксации весьма многообразны. Время установления равновесия (частичного или полного) в системе называется временем релаксации.

Процесс установления равновесия в газах определяется длиной свободного пробега частиц l{\displaystyle l} и временем свободного пробега t{\displaystyle t} (среднее расстояние и среднее время между двумя последовательными столкновениями молекул). Отношение l/t{\displaystyle l/t} имеет порядок величины скорости частиц. Величины l{\displaystyle l} и t{\displaystyle t} очень малы по сравнению с макроскопическими масштабами длины и времени. С другой стороны, для газов время свободного пробега значительно больше времени столкновения t0{\displaystyle t_{0}} (t≫t0){\displaystyle (t\gg t_{0})}. Только при этом условии релаксация определяется лишь парными столкновениями молекул.

Описание процесса релаксации

Для одноатомных газов

В одноатомных газах (без внутренних степеней свободы, то есть обладающих только поступательными степенями свободы) релаксация происходит в два этапа.

На первом этапе за короткий промежуток времени, порядка времени столкновения молекул то, начальное, даже сильно неравновесное, состояние хаотизируется таким образом, что становятся несущественными детали начального состояния и оказывается возможным так называемое «сокращённое описание» неравновесного состояния системы, когда не требуется знания вероятности распределения всех частиц системы по координатам и импульсам, а достаточно знать распределение одной частицы по координатам и импульсам в зависимости от времени, то есть одночастичную функцию распределения молекул. (Все остальные функции распределения более высокого порядка, описывающие распределения по состояниям двух, трёх и т. д. частиц, зависят от времени лишь через одночастичную функцию).

Одночастичная функция удовлетворяет кинетическому уравнению Больцмана, которое описывает процесс релаксации. Этот этап называется кинетическим и является очень быстрым процессом релаксации.

На втором этапе за время порядка времени свободного пробега молекул и в результате всего нескольких столкновений в макроскопически малых объёмах системы устанавливается локальное равновесие; ему соответствует локально-равновесное, или квазиравновесное, распределение, которое характеризуется такими же параметрами, как и при полном равновесии системы, но зависящими от пространственных координат и времени. Эти малые объёмы содержат ещё очень много молекул, а поскольку они взаимодействуют с окружением лишь на своей поверхности, их можно считать приближённо изолированными. Параметры локально-равновесного распределения в процессе релаксации медленно стремятся к равновесным, а состояние системы обычно мало отличается от равновесного. Время релаксации для локального равновесия tp≫t0{\displaystyle t_{p}\gg t_{0}}. После установления локального равновесия для описания релаксации неравновесного состояния системы служат уравнения гидродинамики (уравнения Навье — Стокса, уравнения теплопроводности, диффузии и т. п.). При этом предполагается, что термодинамические параметры системы (плотность, температура и т. д.) и массовая скорость (средняя скорость переноса массы) мало меняются за время t{\displaystyle t} и на расстоянии l{\displaystyle l}. Этот этап релаксации называется гидродинамическим. Дальнейшая релаксация системы к состоянию полного статистического равновесия, при котором выравниваются средние скорости частиц, средняя температура, средняя концентрация и т. д., происходит медленно в результате очень большого числа столкновений.

Такие процессы (вязкость, теплопроводность, диффузия, электропроводность и т. п.) называются медленными. Соответствующее время релаксации tp{\displaystyle t_{p}} зависит от размеров L{\displaystyle L} системы и велико по сравнению с t{\displaystyle t}: t0≈t(L/l)2≫t{\displaystyle t_{0}\approx t(L/l)2\gg t}, что имеет место при l≪L{\displaystyle l\ll L}, то есть для не сильно разреженных газов.

Для многоатомных газов

В многоатомных газах (с внутренними степенями свободы) может быть замедлен обмен энергией между поступательными и внутренними степенями свободы, и возникает процесс релаксации, связанный с этим явлением. Быстрее всего — за время порядка времени между столкновениями — устанавливается равновесие по поступательным степеням свободы; такое равновесное состояние можно охарактеризовать соответствующей температурой. Равновесие между поступательными и вращательными степенями свободы устанавливается значительно медленнее. Возбуждение колебательных степеней свободы может происходить лишь при высоких температурах. Поэтому в многоатомных газах возможны многоступенчатые процессы релаксации энергии колебательных и вращательных степеней свободы.

Для смесей газов

В смесях газов с сильно различающимися массами молекул замедлен обмен энергией между компонентами, вследствие чего возможно возникновение состояния с различными температурами компонент и процессы релаксации их температур. Например, в плазме сильно различаются массы ионов и электронов. Быстрее всего устанавливается равновесие электронной компоненты, затем приходит в равновесие ионная компонента, и значительно большее время требуется для установления равновесия между электронами и ионами; поэтому в плазме могут длительное время существовать состояния, в которых ионные и электронные температуры различны а, следовательно, происходят процессы релаксации температур компонент.

Для жидкостей

В жидкостях теряет смысл понятие времени и длины свободного пробега частиц (а следовательно, и кинетического уравнения для одночастичной функции распределения). Аналогичную роль для жидкости играют величины t1{\displaystyle t_{1}} и l1{\displaystyle l_{1}} — время и длина корреляции динамических переменных, описывающих потоки энергии или импульса; t1{\displaystyle t_{1}} и l1{\displaystyle l_{1}} характеризуют затухание во времени и в пространстве взаимного влияния молекул, то есть корреляции. При этом полностью остаётся в силе понятие гидродинамического этапа релаксации и локально-равновесного состояния. В макроскопически малых объёмах жидкости, но ещё достаточно больших по сравнению с длиной корреляции l1{\displaystyle l_{1}}, локально-равновесное распределение устанавливается за время порядка времени корреляции t1{\displaystyle t_{1}} (tp≫t1){\displaystyle (t_{p}\gg t_{1})} в результате интенсивного взаимодействия между молекулами (а не парных столкновений, как в газе), но эти объёмы по-прежнему можно считать приближённо изолированными. На гидродинамическом этапе релаксация в жидкости термодинамические параметры и массовая скорость удовлетворяют таким же уравнениям гидродинамики, как и для газов (при условии малости изменения термодинамических параметров и массовой скорости за время t1{\displaystyle t_{1}} и на расстоянии l1{\displaystyle l_{1}}). Время релаксации к полному термодинамическому равновесию tp≫t1(L/l1)2{\displaystyle t_{p}\gg t_{1}(L/l_{1})^{2}} (так же, как в газе и твёрдом теле) можно оценить с помощью кинетических коэффициентов. Например, время релаксации концентрации в бинарной смеси в объёме L3{\displaystyle L^{3}} порядка tp≫L2/D{\displaystyle t_{p}\gg L^{2}/D}, где D{\displaystyle D} — коэффициент диффузии, время релаксации температуры tp≫L2/c{\displaystyle t_{p}\gg L^{2}/c}, где c{\displaystyle c} — коэффициент температуропроводности, и т. д. Для жидкости с внутренними степенями свободы молекул возможно сочетание гидродинамического описания поступательных степеней свободы с дополнительными уравнениями для описания релаксации внутренних степеней свободы (релаксационная гидродинамика).

Для твёрдых тел и квантовых жидкостей

В твёрдых телах, как и в квантовых жидкостях, релаксацию можно описывать как релаксацию в газе квазичастиц. В этом случае можно ввести время и длину свободного пробега соответствующих квазичастиц (при условии малости возбуждения системы).

Например, в кристаллической решётке при низких температурах упругие колебания можно трактовать как газ фононов. Взаимодействие между фононами приводит к квантовым переходам, то есть к столкновениям между ними. Релаксация энергии в кристаллической решётке описывается кинетическим уравнением для фононов. В системе спиновых магнитных моментов ферромагнетика квазичастицами являются магноны. Релаксацию (например, намагниченности) можно описывать кинетическим уравнением для магнонов. Релаксация магнитного момента в ферромагнетике происходит в два этапа: на первом этапе за счёт относительно сильного обменного взаимодействия устанавливается равновесное значение абсолютной величины магнитного момента.

На втором этапе за счёт слабого спин-орбитального взаимодействия магнитный момент медленно ориентируется вдоль оси лёгкого намагничивания; этот этап аналогичен гидродинамическому этапу релаксации в газах.

См. также

Примечание

Литература

  • Уленбек Д., Форд Дж. Лекции по статистической механике. — Пер. с англ. — М.: Мир, 1965.
  • Бондаревский С. И., Аблесимов Н. Е. Релаксационные эффекты в неравновесных конденсированных системах. Самооблучение в результате радиоактивного распада. — Владивосток: Дальнаука, 2002. — 232 с.
  • Аблесимов Н. Е., Земцов А. Н. Релаксационные эффекты в неравновесных конденсированных системах. Базальты: от извержения до волокна. — М.: ИТиГ ДВО РАН, 2010. — 400 с.
  • Осипов А. И. Термодинамика вчера, сегодня, завтра. Часть 1. Равновесная термодинамика (недоступная ссылка) // СОЖ. — 1999. — № 4. — с. 79-85.

Время релаксации — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 июня 2016; проверки требуют 4 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 июня 2016; проверки требуют 4 правки.

Время релаксации — период времени, за который амплитудное значение возмущения в выведенной из равновесия физической системе уменьшается в e раз (e — основание натурального логарифма), в основном обозначается греческой буквой τ.

Согласно принципу Ле Шателье — Брауна, при отклонении физической системы от состояния устойчивого равновесия возникают силы, которые пытаются вернуть систему к равновесному состоянию. Если в состоянии равновесия некоторая физическая величина f имеет значение f0{\displaystyle f_{0}}, причём отклонение от равновесия |f−f0|≪f0{\displaystyle |f-f_{0}|\ll f_{0}}, то в первом приближении можно считать, что эти силы пропорциональны отклонению. Кинетическое уравнение для величины f запишется в виде

dfdt=−λ(f−f0){\displaystyle {\frac {df}{dt}}=-\lambda (f-f_{0})},

где λ — некоторый параметр, а знак минус указывает на то, что реакция системы на возмущение приводит к возвращению к равновесному состоянию.

Время релаксации

τ=1β{\displaystyle \tau ={\frac {1}{\beta }}}

В таком случае величина f будет изменяться по закону:

f(t)=f0+Δf0e−t/τ{\displaystyle f(t)=f_{0}+\Delta f_{0}e^{-t/\tau }},

где Δf0=f(0)−f0{\displaystyle \Delta f_{0}=f(0)-f_{0}} — начальное возмущение.

Приближение времени релаксации широко используется при описании кинетических процессов в физике, когда речь идет о кинетике установления равновесного состояния. Переход от неравновесного состояния к равновесию сопровождается диссипацией энергии и является необратимым процессом. Установление равновесия часто проходит в несколько этапов, которые характеризуются своими отдельными временами релаксации. Так, при возбуждении молекул светом установление теплового равновесия происходит за время порядка 10−12{\displaystyle 10^{-12}} с, а вот люминесценция — излучение света возбуждёнными состояниями, может иметь характерные времена порядка наносекунд и даже микросекунд.

При описании многих физических процессов время релаксации берётся как феноменологический параметр, однако в отдельных случаях его можно определить через параметры микроскопических процессов, таких как вероятность квантовомеханического перехода или сечение рассеяния.

Релаксация (физика) — Википедия

Релакса́ция (от лат. relaxatio «ослабление, уменьшение») — процесс установления термодинамического, а следовательно, и статистического равновесия в физической системе, состоящей из большого числа частиц.

Релаксация — многоступенчатый процесс, так как не все физические параметры системы (распределение частиц по координатам и импульсам, температура, давление, концентрация в малых объёмах и во всей системе и другие) стремятся к равновесию с одинаковой скоростью. Обычно сначала устанавливается равновесие по какому-либо параметру (частичное равновесие), что также называется релаксацией. Все процессы релаксации являются неравновесными процессами, при которых в системе происходит диссипация энергии, то есть производится энтропия (в замкнутой системе энтропия не убывает). В различных системах релаксация имеет свои особенности, зависящие от характера взаимодействия между частицами системы; поэтому процессы релаксации весьма многообразны. Время установления равновесия (частичного или полного) в системе называется временем релаксации.

Процесс установления равновесия в газах определяется длиной свободного пробега частиц l{\displaystyle l} и временем свободного пробега t{\displaystyle t} (среднее расстояние и среднее время между двумя последовательными столкновениями молекул). Отношение l/t{\displaystyle l/t} имеет порядок величины скорости частиц. Величины l{\displaystyle l} и t{\displaystyle t} очень малы по сравнению с макроскопическими масштабами длины и времени. С другой стороны, для газов время свободного пробега значительно больше времени столкновения t0{\displaystyle t_{0}} (t≫t0){\displaystyle (t\gg t_{0})}. Только при этом условии релаксация определяется лишь парными столкновениями молекул.

Описание процесса релаксации

Для одноатомных газов

В одноатомных газах (без внутренних степеней свободы, то есть обладающих только поступательными степенями свободы) релаксация происходит в два этапа.

На первом этапе за короткий промежуток времени, порядка времени столкновения молекул то, начальное, даже сильно неравновесное, состояние хаотизируется таким образом, что становятся несущественными детали начального состояния и оказывается возможным так называемое «сокращённое описание» неравновесного состояния системы, когда не требуется знания вероятности распределения всех частиц системы по координатам и импульсам, а достаточно знать распределение одной частицы по координатам и импульсам в зависимости от времени, то есть одночастичную функцию распределения молекул. (Все остальные функции распределения более высокого порядка, описывающие распределения по состояниям двух, трёх и т. д. частиц, зависят от времени лишь через одночастичную функцию).

Одночастичная функция удовлетворяет кинетическому уравнению Больцмана, которое описывает процесс релаксации. Этот этап называется кинетическим и является очень быстрым процессом релаксации.

На втором этапе за время порядка времени свободного пробега молекул и в результате всего нескольких столкновений в макроскопически малых объёмах системы устанавливается локальное равновесие; ему соответствует локально-равновесное, или квазиравновесное, распределение, которое характеризуется такими же параметрами, как и при полном равновесии системы, но зависящими от пространственных координат и времени. Эти малые объёмы содержат ещё очень много молекул, а поскольку они взаимодействуют с окружением лишь на своей поверхности, их можно считать приближённо изолированными. Параметры локально-равновесного распределения в процессе релаксации медленно стремятся к равновесным, а состояние системы обычно мало отличается от равновесного. Время релаксации для локального равновесия tp≫t0{\displaystyle t_{p}\gg t_{0}}. После установления локального равновесия для описания релаксации неравновесного состояния системы служат уравнения гидродинамики (уравнения Навье — Стокса, уравнения теплопроводности, диффузии и т. п.). При этом предполагается, что термодинамические параметры системы (плотность, температура и т. д.) и массовая скорость (средняя скорость переноса массы) мало меняются за время t{\displaystyle t} и на расстоянии l{\displaystyle l}. Этот этап релаксации называется гидродинамическим. Дальнейшая релаксация системы к состоянию полного статистического равновесия, при котором выравниваются средние скорости частиц, средняя температура, средняя концентрация и т. д., происходит медленно в результате очень большого числа столкновений.

Такие процессы (вязкость, теплопроводность, диффузия, электропроводность и т. п.) называются медленными. Соответствующее время релаксации tp{\displaystyle t_{p}} зависит от размеров L{\displaystyle L} системы и велико по сравнению с t{\displaystyle t}: t0≈t(L/l)2≫t{\displaystyle t_{0}\approx t(L/l)2\gg t}, что имеет место при l≪L{\displaystyle l\ll L}, то есть для не сильно разреженных газов.

Для многоатомных газов

В многоатомных газах (с внутренними степенями свободы) может быть замедлен обмен энергией между поступательными и внутренними степенями свободы, и возникает процесс релаксации, связанный с этим явлением. Быстрее всего — за время порядка времени между столкновениями — устанавливается равновесие по поступательным степеням свободы; такое равновесное состояние можно охарактеризовать соответствующей температурой. Равновесие между поступательными и вращательными степенями свободы устанавливается значительно медленнее. Возбуждение колебательных степеней свободы может происходить лишь при высоких температурах. Поэтому в многоатомных газах возможны многоступенчатые процессы релаксации энергии колебательных и вращательных степеней свободы.

Для смесей газов

В смесях газов с сильно различающимися массами молекул замедлен обмен энергией между компонентами, вследствие чего возможно возникновение состояния с различными температурами компонент и процессы релаксации их температур. Например, в плазме сильно различаются массы ионов и электронов. Быстрее всего устанавливается равновесие электронной компоненты, затем приходит в равновесие ионная компонента, и значительно большее время требуется для установления равновесия между электронами и ионами; поэтому в плазме могут длительное время существовать состояния, в которых ионные и электронные температуры различны а, следовательно, происходят процессы релаксации температур компонент.

Для жидкостей

В жидкостях теряет смысл понятие времени и длины свободного пробега частиц (а следовательно, и кинетического уравнения для одночастичной функции распределения). Аналогичную роль для жидкости играют величины t1{\displaystyle t_{1}} и l1{\displaystyle l_{1}} — время и длина корреляции динамических переменных, описывающих потоки энергии или импульса; t1{\displaystyle t_{1}} и l1{\displaystyle l_{1}} характеризуют затухание во времени и в пространстве взаимного влияния молекул, то есть корреляции. При этом полностью остаётся в силе понятие гидродинамического этапа релаксации и локально-равновесного состояния. В макроскопически малых объёмах жидкости, но ещё достаточно больших по сравнению с длиной корреляции l1{\displaystyle l_{1}}, локально-равновесное распределение устанавливается за время порядка времени корреляции t1{\displaystyle t_{1}} (tp≫t1){\displaystyle (t_{p}\gg t_{1})} в результате интенсивного взаимодействия между молекулами (а не парных столкновений, как в газе), но эти объёмы по-прежнему можно считать приближённо изолированными. На гидродинамическом этапе релаксация в жидкости термодинамические параметры и массовая скорость удовлетворяют таким же уравнениям гидродинамики, как и для газов (при условии малости изменения термодинамических параметров и массовой скорости за время t1{\displaystyle t_{1}} и на расстоянии l1{\displaystyle l_{1}}). Время релаксации к полному термодинамическому равновесию tp≫t1(L/l1)2{\displaystyle t_{p}\gg t_{1}(L/l_{1})^{2}} (так же, как в газе и твёрдом теле) можно оценить с помощью кинетических коэффициентов. Например, время релаксации концентрации в бинарной смеси в объёме L3{\displaystyle L^{3}} порядка tp≫L2/D{\displaystyle t_{p}\gg L^{2}/D}, где D{\displaystyle D} — коэффициент диффузии, время релаксации температуры tp≫L2/c{\displaystyle t_{p}\gg L^{2}/c}, где c{\displaystyle c} — коэффициент температуропроводности, и т. д. Для жидкости с внутренними степенями свободы молекул возможно сочетание гидродинамического описания поступательных степеней свободы с дополнительными уравнениями для описания релаксации внутренних степеней свободы (релаксационная гидродинамика).

Для твёрдых тел и квантовых жидкостей

В твёрдых телах, как и в квантовых жидкостях, релаксацию можно описывать как релаксацию в газе квазичастиц. В этом случае можно ввести время и длину свободного пробега соответствующих квазичастиц (при условии малости возбуждения системы).

Например, в кристаллической решётке при низких температурах упругие колебания можно трактовать как газ фононов. Взаимодействие между фононами приводит к квантовым переходам, то есть к столкновениям между ними. Релаксация энергии в кристаллической решётке описывается кинетическим уравнением для фононов. В системе спиновых магнитных моментов ферромагнетика квазичастицами являются магноны. Релаксацию (например, намагниченности) можно описывать кинетическим уравнением для магнонов. Релаксация магнитного момента в ферромагнетике происходит в два этапа: на первом этапе за счёт относительно сильного обменного взаимодействия устанавливается равновесное значение абсолютной величины магнитного момента.

На втором этапе за счёт слабого спин-орбитального взаимодействия магнитный момент медленно ориентируется вдоль оси лёгкого намагничивания; этот этап аналогичен гидродинамическому этапу релаксации в газах.

См. также

Примечание

Литература

  • Уленбек Д., Форд Дж. Лекции по статистической механике. — Пер. с англ. — М.: Мир, 1965.
  • Бондаревский С. И., Аблесимов Н. Е. Релаксационные эффекты в неравновесных конденсированных системах. Самооблучение в результате радиоактивного распада. — Владивосток: Дальнаука, 2002. — 232 с.
  • Аблесимов Н. Е., Земцов А. Н. Релаксационные эффекты в неравновесных конденсированных системах. Базальты: от извержения до волокна. — М.: ИТиГ ДВО РАН, 2010. — 400 с.
  • Осипов А. И. Термодинамика вчера, сегодня, завтра. Часть 1. Равновесная термодинамика (недоступная ссылка) // СОЖ. — 1999. — № 4. — с. 79-85.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *